Question 1. Let A, B be sets, and $i d_{A}, i d_{B}$ are identity functions over A, B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ are functions satisfying $g \circ f=i d_{A}$ and $f \circ g=i d_{B}$. Prove that f is a bijection.

Solution 1. Suppose by contradiction f is either (i) not injective or (ii) not surjective.

Case (i), if f is not injective then there exists $a, a^{\prime} \in A, a \neq a^{\prime}$, with $f(a)=$ $f\left(a^{\prime}\right)$. This implies that $|f(A)| \leq|A-1|$, which implies that $|f(A)|<|A|$, now this implies that $|g(f(A))|<|A|$, since g is a function (and not a relation), and hence $g(f(A)) \neq A$, and hence our assumption that $g \circ f=i d_{A}$ is a contradiction. (RZ: this is correct only if the sets are finite, with infinite sets $|A|-1=|A|$)

Case (ii), if f is not surjective then $f(A) \subset B$, hence $f(g(B)) \subset B$, hence our assumption that $f \circ g=i d_{B}$, is a contradiction.

Since we proved that the necessary conditions for f not bieng bijective does not hold, f is bijective

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in$ $(P(A) \leftrightarrow P(B)$ and prove it is a bijection

Solution 2. Let $g: P(A) \rightarrow P(B)$ be such that, for any $A^{\prime} \in P(A), g\left(A^{\prime}\right)=$ $\left\{f(a) \mid a \in A^{\prime}\right\}$, In order to prove that g is a bijection, we show that g is (i) injective and (ii) surjective
(i) By contradiction if g is not injective then there exists $A^{\prime} \neq A^{\prime \prime} \subseteq P(A)$, such that $g\left(A^{\prime}\right)=g\left(A^{\prime \prime}\right)$, which by definition implies that $f\left(A^{\prime}\right)=f\left(\overline{A^{\prime \prime}}\right)$, but since $A^{\prime} \neq A^{\prime \prime}$, our assumption that f is injective is a contradiction.
(ii) By contradiction if g is not surjective then there exists $B^{\prime} \in P(B)$ such that, for any $A^{\prime} \in P(A), g\left(A^{\prime}\right) \neq B^{\prime}$, but this implies that $f\left(A^{\prime}\right) \nsubseteq B$, but this is a contradiction to our assumption that $f \in(A \rightarrow B)$.

Since we proved that the necessary conditions for g not bieng bijective does not hold, g is bijective

Question 2. Let A and B be sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that it is a bijection

Solution 3. for any $g \in(A \rightsquigarrow B)$, define $f(g)$ as follows, for any $a \in A$,

$$
f(g)(a)= \begin{cases}g(a) & , \text { if } g(a) \text { is defined } \\ b & , \text { otherwise }\end{cases}
$$

We prove that f is a bijection by proving (i) f is injective and (ii) surjective
(i) If f in injective, then for any $g, g^{\prime} \in(A \rightsquigarrow B)$, if $g \neq g^{\prime}$ then $f(g) \neq f\left(g^{\prime}\right)$. By contradiction, if $f(g)=f\left(g^{\prime}\right)$, then for any $(c, d) \in f(g),(c, d) \in f\left(g^{\prime}\right)$ and vice versa. But this implies that $g=g^{\prime}$, since by construction g and g^{\prime} are respectively the sets obtained by removing the pairs (x, b), for any x, from $f(g)$ and $f\left(g^{\prime}\right)$) respectively. Hence (i) is true
(ii) for any $g \in(A \rightarrow B \cup\{b\})$, we know from construction of $f, f^{-1}(g)$ is as follows, for any $a \in A$,

$$
f^{-1}(g)(a)=\left\{\begin{array}{l}
\text { undefined }, \text { if } g(a)=b \\
g(a), \text { otherwise }
\end{array}\right.
$$

, since any such $f^{-1}(g) \in(A \rightsquigarrow B), f$ is surjective
Question 3. Define a bijection $f \in[(P(A) \times P(B)) \rightarrow P(A \uplus B)]$. Prove that is such

Solution 4. Let 1,2 be the tags assigned to the elements of sets A, B respectively, for the operation \uplus. Let f be defined as follows: for any $\left(A^{\prime}, B^{\prime}\right) \in P(A) \times P(B)$, as

$$
f\left(\left(A^{\prime}, B^{\prime}\right)\right)=\left\{(1, a) \mid a \in A^{\prime}\right\} \cup\left\{(2, b) \mid b \in B^{\prime}\right\}
$$

In order to prove f is an bijection, we prove (i) f is injective and (ii) f is surjective.
(i) Suppose by contradiction, f is not injective then there exists pairs $\left(A^{\prime}, B^{\prime}\right),\left(A^{\prime \prime}, B^{\prime \prime}\right) \in$ $P(A) \times P(B)$, such that $\left(A^{\prime}, B^{\prime}\right) \neq\left(A^{\prime \prime}, B^{\prime \prime}\right)$ and $f\left(\left(A^{\prime}, B^{\prime}\right)\right)=f\left(\left(A^{\prime \prime}, B^{\prime \prime}\right)\right)$. If $f\left(\left(A^{\prime}, B^{\prime}\right)\right)=f\left(\left(A^{\prime \prime}, B^{\prime \prime}\right)\right)$, then, since by construction any element in $f\left(\left(A^{\prime}, B^{\prime}\right)\right)$ is of the form $(1, a)$ or $(2, b)$, the set $\left\{a \mid(1, a) \in f\left(\left(A^{\prime}, B^{\prime}\right)\right)\right\}=\{a \mid(1, a) \in$ $\left.f\left(\left(A^{\prime}, B^{\prime}\right)\right)\right\}$, and $\left\{b \mid(2, b) \in f\left(\left(A^{\prime}, B^{\prime}\right)\right)\right\}=\left\{b \mid(2, b) \in f\left(\left(A^{\prime \prime}, B^{\prime \prime}\right)\right)\right\}$. But this implies that $\left(A^{\prime}, B^{\prime}\right)=\left(A^{\prime \prime}, B^{\prime \prime}\right)$, which is a contradiction to our assumption.
(ii) In order to prove that f is surjective. By construction of f, the inverse of $f, f^{-1}: P(A \uplus B) \rightarrow P(A) \times P(B)$ is given as: For any set $X \in P(A \uplus B)$

$$
f^{-1}(X)=\{(\{a \mid(1, a) \in X\},\{b \mid(2, b) \in X\})\}
$$

Now for any $X \in P(A \uplus B)$, one of the following mutually exclusive exhaustive cases is true :

1. X is empty - if this is the case, then $f^{-1}(X)=(\emptyset, \emptyset)$
2. $\{a \mid(1, a) \in X\}$ is not empty, and $\{b \mid(2, b) \in X\}$ is empty - if this is the case, then $f^{-1}(X)$ if of the form $(\{a \mid(1, a) \in X\}, \emptyset)$
3. $\{a \mid(1, a) \in X\}$ is empty, and $\{b \mid(2, b) \in X\}$ is not empty - if this is the case, then $f^{-1}(X)=(\emptyset,\{b \mid(2, b) \in X\})$
4. $\{a \mid(1, a) \in X\}$ is not empty, and $\{b \mid(2, b) \in X\}$ is not empty - if this is the case, then $f^{-1}(X)=(\{a \mid(1, a) \in X\},\{b \mid(2, b) \in X\})$

Since in each of the above cases, show that f^{-1} is defined, f is surjective
Question 4. Define a bijection, $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$
Solution 5. Let 1,2 be the tags assigned to the elements of sets A, B respectively, for the operation \uplus. We define the bijection f as follows: for any $g \in((A \uplus B) \rightarrow$ C),

$$
f(g)=(\{(a, c) \mid((1, a), c) \in g\},\{(b, c) \mid((2, b), c) \in g\})
$$

In order to prove that f is bijective, we prove f is both (i) injective and (ii) surjective.
(i) By contradiction, if f is not injective, then there exists $g, g^{\prime} \in((A \uplus B) \rightarrow$ $C), g \neq g^{\prime}$ such that $f(g)=f\left(g^{\prime}\right)$. Let $f(g)=\left(h_{1}, h_{1}^{\prime}\right)$ and $f\left(g^{\prime}\right)=\left(h_{2}, h_{2}^{\prime}\right)$, but since $f(g)=f\left(g^{\prime}\right), h_{1}=h_{2}$ and $h_{1}^{\prime}=h_{2}^{\prime}$. But by construction of f, this implies that $g=g^{\prime}$.
(ii) In order to prove that f is surjective, We construct the inverse of f, $f^{-1}:((A \rightarrow C) \times(B \rightarrow C)) \rightarrow((A \uplus B) \rightarrow C)$ as: For any pair $\left(h, h^{\prime}\right) \in((A \rightarrow$ B) $\times(B \rightarrow C))$

$$
f^{-1}\left(\left(h, h^{\prime}\right)\right)=\{((1, a), c) \mid(a, c) \in h\} \cup\left\{((2, b), c) \mid(b, c) \in h^{\prime}\right\}
$$

Since f^{-1} is defined for any $\left(h, h^{\prime}\right) \in((A \rightarrow B) \times(B \rightarrow C)), f$ is surjective.
Question 5. Define a bijection, $f \in[(A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$
Solution 6. We define the bijection f as follows: for any $g \in(A \rightarrow(B \times C))$,

$$
f(g)=\{((a, b),(a, c)) \mid(a,(b, c)) \in g\}
$$

In order to prove that f is bijective, we prove f is both (i) injective and (ii) surjective.
(i) By contradiction, if f is not injective, then there exists $g, g^{\prime} \in(A \rightarrow$ $(B \times C)), g \neq g^{\prime}$ such that $f(g)=f\left(g^{\prime}\right)$. Let $f(g)=\left(h_{1}, h_{1}^{\prime}\right)$ and $f\left(g^{\prime}\right)=\left(h_{2}, h_{2}^{\prime}\right)$, but since $f(g)=f\left(g^{\prime}\right), h_{1}=h_{2}$ and $h_{1}^{\prime}=h_{2}^{\prime}$. But by construction of f, this implies that $g=g^{\prime}$.
(ii) In order to prove that f is surjective, We construct the inverse of f, $f^{-1}:((A \rightarrow B) \times(A \rightarrow C)) \rightarrow(A \rightarrow(B \times C))$ as: For any pair $\left(h, h^{\prime}\right) \in((A \rightarrow$ $B) \times(B \rightarrow C))$

$$
f^{-1}\left(\left(h, h^{\prime}\right)\right)=\left\{(a,(b, c)) \mid(a, b) \in h \wedge(a, c) \in h^{\prime}\right\}
$$

Since f^{-1} is defined for any $\left(h, h^{\prime}\right) \in((A \rightarrow B) \times(A \rightarrow C)), f$ is surjective.

[^0]
[^0]: ${ }^{1}$ Sorry, I didn't manage to install the Lyx software on my computer yet, bcos there is a software upgrade error

