Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

a. f is injective
let's prove it by contradiction
if it's not injective, then $\exists(x, y) . f(x)=f(y) \nRightarrow x=y$
$\exists(x, y), x \neq y . f(x)=f(y)$
but if $f(x)=f(y)$ and $x \neq y$, then it cannot happen that $g(f(x))=x$ and $g(f(y))=y$, because the function f maps two different values of the domain to the same value of the codomain, and it is not possible to return to the distinct x and y by applying the function g
but this must happen, because $g \circ f=\mathrm{id}_{A}$
so it's impossible: f is injective
b. f is surjective
let's prove it by contradiction
if it's not surjective, then $\exists y \epsilon B . \forall x \epsilon A . f(x) \neq y$: there exists a y that is not mapped by g
but $f \circ g=f(g(y))=\operatorname{id}_{B}=y$, so y must be mapped
contradiction:
f
is
surjective
f is injective and suriective, but it's bijective

2 Question

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

Let's take $A=\mathbb{N}, B=\mathbb{N} \backslash\{0\}$ and $f(x)=x+1$. This is a bijection
let's define $\mathcal{P}(A)=\{0,1,2\}, \mathcal{P}(B)=\{2,3,4\}$, and $g(x)=x+2$
$\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B})$ are subsets of A and B
g is a bijection, because it is a one-to-one mapping from $\mathcal{P}(A)$ to $\mathcal{P}(B)$:
$0 \rightarrow 2$
$1 \rightarrow 3$
$2 \rightarrow 4$
(RZ: ok, but in the general case?)

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that it is such.

3.1 Answer

Let's take $A=\mathbb{N}$ and $B=\mathbb{N} \backslash\{0\}$. Let's take the set of partial functions C defined as $C=\left\{\left(c_{1}(1)=2\right) ;\left(c_{2}(2)=3\right) ; \ldots ;\left(c_{i}(i)=i+1\right) ; \ldots\right\}$, and the set of total functions $D:(\mathbb{N} \rightarrow \mathbb{N} \backslash\{0\} \cup\{0\})$, defined as $D=\left\{\left(d_{1}(x)=1 \cdot x\right) ;\left(d_{2}(x)=\right.\right.$ $\left.2 \cdot x) ; \ldots ;\left(d_{i}(x)=i \cdot x\right) ; \ldots\right\}$ (where the c_{i} s and the d_{i} s are single functions) (RZ: what if they are different, in the general case?)
let's define the function $f: C \rightarrow D$ as $f\left(c_{i}\right)=d_{i}$
we have the following mapping:
$\triangleright\{1 \rightarrow 2\} \longrightarrow\{x \rightarrow x\}$
$\triangleright\{2 \rightarrow 3\} \longrightarrow\{x \rightarrow 2 x\}$
$\triangleright \ldots$
$\triangleright\{i \rightarrow i+1\} \longrightarrow\{x \rightarrow i x\}$
$\triangleright \ldots$
f is injective
if not, there exists a function d_{i} that is mapped by more than one different c_{i}
so $c_{i} \neq c_{j} \Rightarrow d_{i}=d_{j}$
so $\{i \rightarrow i+1\} \longrightarrow\{x \rightarrow i x\}$ and $\{j \rightarrow j+1\} \longrightarrow\{x \longrightarrow j x\}$, with $i x=j x$ but if $i \neq j$, than $i x \neq j x$ too contradiction: f is injective
f is surjective
if not, there exists a function d_{z} that is not mapped by any c_{i}
d_{i} functions have the form $d_{i}(x)=i x$, so the d_{z} function should be $d_{z}(x)=$ $z x$
but this, by definition, is mapped by the function $c_{z}(z)=z+1$
so f is surjective

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in[(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

Write your answer here.

5 Question

Define a bijection $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$. Prove that is is such.

5.1 Answer

Write your answer here.

6 Question

Define a bijection $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$. Prove that is is such.

6.1 Answer

Write your answer here.

