Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

a. f is injective

let's prove it by contradiction

if it's not injective, then $\exists (x, y). f(x) = f(y) \Rightarrow x = y$

 $\exists (x,y), \ x \neq y. \ f(x) = f(y)$

but if f(x) = f(y) and $x \neq y$, then it cannot happen that g(f(x)) = x and g(f(y)) = y, because the function f maps two different values of the domain to the same value of the codomain, and it is not possible to return to the distinct x and y by applying the function g

but this must happen, because $g \circ f = id_A$ so it's impossible: f is injective

b. f is surjective

let's prove it by contradiction

if it's not surjective, then $\exists y \in B$. $\forall x \in A$. $f(x) \neq y$: there exists a y that is not mapped by g

but $f \circ g = f(g(y)) = id_B = y$, so y must be mapped

contradiction:

is

surjective

f is injective and surjective, but it's bijective

2 Question

Let A, B be sets, and let $f \in (A \leftrightarrow B)$ be a bijection. Define a bijection $g \in (\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

f

2.1 Answer

Let's take $A = \mathbb{N}$, $B = \mathbb{N} \setminus \{0\}$ and f(x) = x + 1. This is a bijection let's define $\mathcal{P}(A) = \{0, 1, 2\}$, $\mathcal{P}(B) = \{2, 3, 4\}$, and g(x) = x + 2P(A) and P(B) are subsets of A and B g is a bijection, because it is a one-to-one mapping from $\mathcal{P}(A)$ to $\mathcal{P}(B)$: $0 \to 2$ $1 \to 3$ $2 \to 4$ (RZ: ok, but in the general case?)

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup \{b\})$. Prove that it is such.

3.1 Answer

Let's take $A = \mathbb{N}$ and $B = \mathbb{N} \setminus \{0\}$. Let's take the set of partial functions C defined as $C = \{(c_1(1) = 2); (c_2(2) = 3); ...; (c_i(i) = i + 1); ...\}$, and the set of total functions $D : (\mathbb{N} \to \mathbb{N} \setminus \{0\} \cup \{0\})$, defined as $D = \{(d_1(x) = 1 \cdot x); (d_2(x) = 2 \cdot x); ...; (d_i(x) = i \cdot x); ...\}$ (where the c_i s and the d_i s are single functions) (RZ: what if they are different, in the general case?)

let's define the function $f: C \to D$ as $f(c_i) = d_i$ we have the following mapping: $\triangleright \{1 \to 2\} \longrightarrow \{x \to x\}$ $\triangleright \{2 \to 3\} \longrightarrow \{x \to 2x\}$ $\triangleright \dots$ $\triangleright \{i \to i+1\} \longrightarrow \{x \to ix\}$ $\triangleright \dots$

f is injective

if not, there exists a function d_i that is mapped by more than one different c_i

so $c_i \neq c_j \Rightarrow d_i = d_j$

so $\{i \to i+1\} \longrightarrow \{x \to ix\}$ and $\{j \to j+1\} \longrightarrow \{x \longrightarrow jx\}$, with ix = jxbut if $i \neq j$, than $ix \neq jx$ too contradiction: f is injective

f is surjective

if not, there exists a function d_z that is not mapped by any c_i

 d_i functions have the form $d_i(x)=ix,$ so the d_z function should be $d_z(x)=zx$

but this, by definition, is mapped by the function $c_z(z) = z + 1$ so f is surjective

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in [(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

Write your answer here.

5 Question

Define a bijection $f \in [((A \uplus B) \to C) \leftrightarrow ((A \to C) \times (B \to C))]$. Prove that is is such.

5.1 Answer

Write your answer here.

6 Question

Define a bijection $f \in [((A \to (B \times C)) \leftrightarrow ((A \to B) \times (A \to C))]$. Prove that is is such.

6.1 Answer

Write your answer here.