Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

TRIVIA: $f \circ g \in(B \rightarrow B),(f \circ g)(b)=f(g(b)) . \forall b \in B, g \circ f \in(A \rightarrow$ $A),(g \circ f)(a)=g(f(a)) . \forall a \in A$

TRIVIA: $i d_{B} \in(B \rightarrow B), i d_{B}(b)=b . \forall b \in B, i d_{A} \in(A \rightarrow A), i d_{A}(a)=$ $a . \forall a \in A$

Demonstration:

1. Injectivity

By definition, a (total) function is a relation that maps an input of the domain in exactly one point of the codomain.

Let's suppose for contraddiction that there exist two elements a_{1}, a_{2} such that $b=f\left(a_{1}\right)$ and $b=f\left(a_{2}\right)$ with $a_{1} \neq a_{2}$.

Since $g \circ f=\operatorname{id}_{A}$, we have that $g\left(f\left(a_{1}\right)\right)=g(b)=a_{1}$ and $g\left(f\left(a_{2}\right)\right)=g(b)=$ a_{2}.

However, g is a (total) function therefore there must exist only one element $a \in A$ such that $g(b)=a$.

Hence $a_{1}=a_{2}$.
2. Surjectivity

Let's suppose for contraddiction that $\exists b \in B . \forall a \in A . f(a) \neq b$.

Then for this element b we have that $f \circ g(b) \neq b$, otherwise it would exist an $a \in A$ such that $i d_{B}(b)=f \circ g(b)=f(g(b))=f(a)=b . \perp$ (this is exactly one of our preliminary hyphotesis)

Hence, f is surjective (same holds for g)
3. Injective \&\& Surjective $=>$ Bijective.

2 Question

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

$g: \mathcal{P}(A) \leftrightarrow \mathcal{P}(B), g=\left\{\left(A^{\prime}, B^{\prime}\right) \mid A^{\prime} \in \mathcal{P}(A) \wedge B^{\prime} \in \mathcal{P}(B) \wedge B^{\prime}=\bigcup_{a^{\prime} \in A^{\prime}} f\left(a^{\prime}\right)\right\}$.
(RZ: maybe $g=\left\{\left(A^{\prime}, B^{\prime}\right) \mid A^{\prime} \in \mathcal{P}(A) \wedge B^{\prime} \in \mathcal{P}(B) \wedge B^{\prime}=\left\{f\left(a^{\prime}\right) \mid a^{\prime} \in A^{\prime}\right\}\right\}$ is a more clear notation)

1. Injectivity

Let's suppose for contraddiction that there exist two elements $A_{1}, A_{2} \in \mathcal{P}(A)$ such that $B^{\prime}=g\left(A_{1}\right)$ and $B^{\prime}=g\left(A_{2}\right)\left(B^{\prime} \in \mathcal{P}(B)\right)$ with $A_{1} \neq A_{2}$.
$A_{1} \neq A_{2} \Longrightarrow \exists a \in\left(A_{1} \cup A_{2}\right) \backslash\left(A_{1} \cap A_{2}\right) \Longrightarrow \exists b \in B . b=f(a)$. (since $a \in A$)
Without loss of generality, let's suppose $a \in A_{1}$.
Then by definition of $g,\left(A_{1}, B^{\prime}\right) \in g \Longrightarrow b \in B^{\prime}$ and also $b \in B^{\prime} \wedge\left(A_{2}, B^{\prime}\right) \in$ $g \Longrightarrow a=f^{-1}(b) \in A_{2}$, contraddiction.

Hence, g is injective.
2. Surjectivity

Let's suppose for contraddiction that $\exists B^{\prime} \in \mathcal{P}(B) . \forall A^{\prime} \in \mathcal{P}(A) . g\left(A^{\prime}\right) \neq B^{\prime}$.
Since f is a bijection, it has an inverse $f^{-1} \in(B \leftrightarrow A)$. So, let's define a new set parametric in B^{\prime} :
$A_{B^{\prime}}=\left\{a \in A \mid \exists b \in B^{\prime} . a=f^{-1}(b)\right\}$. It's easy to see that $A_{B^{\prime}} \subseteq A$ (hence $\left.A_{B^{\prime}} \in \mathcal{P}(A)\right)$, and that $B^{\prime}=\bigcup_{a \in A_{B^{\prime}}} f(a)$.

But this means that $\left(A_{B^{\prime}}, B^{\prime}\right) \in g$, since we have fulfilled all the requirements. Contraddiction.

Hence, g is surjective.
3. Injective \&\& Surjective $=>$ Bijective

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that is is such.

3.1 Answer

Since I've a narrowed imagination, i want to verify in advance that such a bijection might exist.

THEOREM: Among two finite sets there exists a bijection if and only if they have the same cardinality.

So let's do some preliminary considerations, in case A, B are finite sets:
a. The set of total functions $(A \rightarrow B)$ has cardinality $|(A \rightarrow B)|=|B|^{|A|}$, with no restrictions of type "surjectivity/injectivity".
b. The set of partial functions $(A \rightsquigarrow B)$ has cardinality $|(A \rightsquigarrow B)|=$ $1+\sum_{i=1}^{|A|}|B|^{i} \frac{|A|!}{(|A|-i)!i!}$, with no restrictions of type "surjectivity/injectivity". [first " 1 " accounts for the empty function]
c. The Binomial Formula states $(1+x)^{n}=\sum_{i=0}^{n} x^{i} \frac{n!}{(n-i)!i!}$, therefore..
d. ..the set of total functions $(A \rightarrow B \cup\{b\}), b \notin B$, has cardinality $\mid(A \rightarrow$ $B \cup\{b\})\left.\left|=(1+|B|)^{|A|}=\sum_{i=0}^{|A|}\right| B\right|^{i} \frac{|A|!}{(|A|-i)!i!}=1+\sum_{i=1}^{|A|}|B|^{i} \frac{|A|!}{(|A|-i)!i!}$

Note: I've calculated these formulas without the support of references, so I advice you to be suspicious and verify them.

Trusting my estimations, one can conclude that such a bijection exists in the case of finite sets.

That's great,. With this renewed selfconfidence let's try to think harder to the (obvious) example.

A possible bijection could be $f=\{(h, g) \mid h:(A \rightsquigarrow B) \wedge g:(A \rightarrow B \cup\{b\}) \wedge$ $h=\{(x, y) \mid x \in A \wedge y \in B \wedge(x, y) \in g\}\}, f:((A \rightsquigarrow B) \leftrightarrow(A \rightarrow B \cup\{b\}))$.

Intuitively, two functions $h:(A \rightsquigarrow B), g:(A \rightarrow B \cup\{b\})$ are in relation by means of f iff the partial function h is the restriction of g on $(A \rightsquigarrow B)$.

So let's try to demonstrate that f is bijective:

1. Injectivity

Let $h_{1}, h_{2} \in(A \rightsquigarrow B)$ be s.t. $f\left(h_{1}\right)=f\left(h_{2}\right)=g \in(A \rightarrow B \cup\{b\})$, we want to show that $h_{1}=h_{2}$ follows necessarily.
$g=f\left(h_{1}\right)=f\left(h_{2}\right) \Longrightarrow\left(h_{1}, g\right) \in f \wedge\left(h_{2}, g\right) \in f \Longrightarrow h_{1}=h_{2}=\{(x, y) \mid x \in$ $A \wedge y \in B \wedge(x, y) \in g\}$
2. Surjectivity

Let's take an arbitrary $g \in(A \rightarrow B \cup\{b\})$, and build its own restriction $z_{g}=\{(x, y) \mid x \in A \wedge y \in B \wedge(x, y) \in g\}$.

By definition of $z_{g}, \operatorname{dom}\left(z_{g}\right) \subseteq A$ and $\operatorname{range}\left(z_{g}\right) \subseteq B$, so it is a partial function belonging to $(A \rightsquigarrow B)$.
3. Totality

It is important to remark that f is total over the set $(A \rightsquigarrow B)$, and this follows intuitively by the observation that one can build
a total function $g:(A \rightarrow B \cup\{b\})$ starting from $h:(A \rightsquigarrow B)$ using the following definition
$g_{h}=\{(x, y) \mid x \in A \wedge y \in B \wedge((x, y) \in h \vee y=b)\}$
which univocally associates a function g_{h} to each h. You can think of $\{b\}$ as a marker that states wherever h is undefined.
3. Injectivity \&\& Surjectivity $=>$ Bijectivity

To conclude, let's observe that the definition of f is absolutely general and makes no assumptions on the cardinality of the sets. Therefore it can be used also for infinite sets.

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in[(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

Again, we may repeat some cardinality considerations for the finite sets case:
a. $\mid\left(\mathcal{P}(A) \times \mathcal{P}(B)\left|=|\mathcal{P}(A)| \times|\mathcal{P}(B)|=2^{|A|}+2^{|B|}=2^{|A|+|B|}\right.\right.$
b. $|\mathcal{P}(A \uplus B)|=2^{|A \uplus B|}=2^{|A|+|B|}$
the cardinality is equal in both cases, therefore there exists a bijection among the two sets.

TRIVIA: if A is a set, then $A \times \emptyset=\emptyset$.
So let's try to define one, assuming the existence of two arbitrary (possibly infinite) sets A, B :
$f_{A, B}=\left\{(X, Y) \mid\left(X=\left(A^{\prime}, B^{\prime}\right) \wedge A^{\prime} \subseteq A \wedge B^{\prime} \subseteq B\right) \Longrightarrow Y=\left(\bigcup_{a \in A^{\prime}}<a, 0>\right.\right.$ $\left.) \cup\left(\bigcup_{b \in B^{\prime}}<b, 1>\right)\right\}, f:(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)$

1. Injectivity

Suppose $X_{1}, X_{2} \in(\mathcal{P}(A) \times \mathcal{P}(B))$ and $Y=f_{A, B}\left(X_{1}\right)=f_{A, B}\left(X_{2}\right) \in \mathcal{P}(A \uplus$ $B)$.
$f_{A, B}\left(X_{1}\right)=f_{A, B}\left(X_{2}\right)$
$\Longrightarrow X_{1}=\left(A^{\prime}, B^{\prime}\right) \wedge X_{2}=\left(A^{\prime \prime}, B^{\prime \prime}\right) \wedge Y=\left(\bigcup_{a \in A^{\prime}}<a, 0>\right) \cup\left(\bigcup_{b \in B^{\prime}}<\right.$ $b, 1>)=\left(\bigcup_{a \in A^{\prime \prime}}<a, 0>\right) \cup\left(\bigcup_{b \in B^{\prime \prime}}<b, 1>\right)$
$\Longrightarrow\left(\bigcup_{a \in A^{\prime}}<a, 0>\right)=\left(\bigcup_{a \in A^{\prime \prime}}<a, 0>\right) \wedge\left(\bigcup_{b \in B^{\prime}}<b, 1>\right)=\left(\bigcup_{b \in B^{\prime}}<\right.$ $b, 1>)$ [I left behind some obvious steps that lead to the next one]
$\Longrightarrow A^{\prime}=A^{\prime \prime} \wedge B^{\prime}=B " \Longrightarrow X_{1}=\left(A^{\prime}, B^{\prime}\right)=\left(A ", B^{\prime \prime}\right)=X_{2}$
2. Surjectivity

Let's take an arbitrary $Y \in \mathcal{P}(A \uplus B)$ and construct $X=\left\{\left(A^{\prime}, B^{\prime}\right) \mid A^{\prime}=\right.$ $\left.\left(\bigcup_{<a, 0>\in Y} a\right) \wedge B^{\prime}=\left(\bigcup_{<b, 1>\in Y} b\right)\right\}$.

It's easy to see that $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, therefore $X \in(\mathcal{P}(A) \times \mathcal{P}(B))$ and $f_{A, B}(X)=Y$.
$\Longrightarrow f_{A, B}$ is injective, surjective and bijective.

5 Question

Define a bijection $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$. Prove that is is such.

5.1 Answer

Again, let's try to repeat some cardinality analisys in the case of finite sets.
a. $|((A \uplus B) \rightarrow C)|=|C|^{|(A \uplus B)|}=|C|^{(|A|+|B|)}$
 $|C|^{(|A|+|B|)}$
since the cardinalities coincide, we may conclude that such a bijection exists (at least) in the case of finite sets.

Good. Let A, B, C be arbitrary (possibly infinite) sets, and $g:((A \uplus B) \rightarrow$ $C), h:(A \rightarrow C), r:(B \rightarrow C)$ be placeholders for any function of that type.

Then a bijective $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$ can be defined as:
$f=\{(g,(h, r)) \mid h=\{(a, c) \mid(<a, 0>, c) \in g\} \wedge r=\{(b, c) \mid(<b, 1>, c) \in g\}\}$

1. Injective

Let $g_{1}, g_{2} \in((A \uplus B) \rightarrow C)$ and
$(h, r)=f\left(g_{1}\right)=f\left(g_{2}\right) \in((A \rightarrow C) \times(B \rightarrow C))$
$\Longrightarrow\left(h=\left\{(a, c) \mid(<a, 0>, c) \in g_{1}\right\}=\left\{(a, c) \mid(<a, 0>, c) \in g_{2}\right\}\right) \wedge(r=$ $\left.\left\{(b, c) \mid(<b, 1>, c) \in g_{1}\right\}=\left\{(b, c) \mid(<b, 1>, c) \in g_{2}\right\}\right)$
$\Longrightarrow\left(\neg \exists(a, c) \in h .(<a, 0>, c) \in\left(g_{1} \cup g_{2}\right) \backslash\left(g_{1} \cap g_{2}\right)\right) \wedge(\neg \exists(b, c) \in r .(<b, 1>$, c) $\left.\in\left(g_{1} \cup g_{2}\right) \backslash\left(g_{1} \cap g_{2}\right)\right)$

$$
\Longrightarrow g_{1}=g_{2}
$$

2. Surjective

Pick an arbitrary $(h, r) \in((A \rightarrow C) \times(B \rightarrow C))$, it's possible to define a function
$g_{(h, r)}=\{(x, c) \mid(x=<a, 0>\wedge(a, c) \in h) \vee(x=<b, 1>\wedge(b, c) \in r)\}$
It's easy to see, by the properties of functions h, r, that $\operatorname{dom}\left(g_{(h, r)}\right)=(A \uplus B)$ and $\operatorname{range}\left(g_{(h, r)}\right) \subseteq C, \Longrightarrow g_{(h, r)} \in((A \uplus B) \rightarrow C)$.

By construction, $f\left(g_{(h, r)}\right)=(h, r)$. Given that (h, r) has been chosen arbitrarily, we can conclude that f is surjective.
$\Longrightarrow f$ is injective, surjective and bijective.

6 Question

Define a bijection $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$. Prove that is is such.

6.1 Answer

Cardinality Analisys, for finite sets case:
a. $|(A \rightarrow(B \times C))|=|(B \times C)|^{|A|}=(|B| \times|C|)^{|A|}$
b. $|(A \rightarrow B) \times(A \rightarrow C)|=|(A \rightarrow B)| \times|(A \rightarrow C)|=|B|^{|A|} \times|C|^{|A|}=$ $(|B| \times|C|)^{|A|}$
since the cardinalities coincide, we may conclude that such a bijection exists (at least) in the case of finite sets.

Let A, B, C be arbitrarily chosen (possibly infinite) sets, and $g:(A \rightarrow$ $(B \times C)), h:(A \rightarrow C), r:(A \rightarrow C)$ be placeholders for any function of the specified type.

Then a bijective $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$ can be defined as:
$f=\left\{(g,(h, r)) \mid h=\bigcup_{(a,(b, c)) \in g}(a, b) \wedge r=\bigcup_{(a,(b, c)) \in g}(a, c)\right\}$

1. Injective

Let $g_{1}, g_{2} \in(A \rightarrow(B \times C))$ and
$(h, r)=f\left(g_{1}\right)=f\left(g_{2}\right) \in((A \rightarrow B) \times(A \rightarrow C))$
$\Longrightarrow\left(h=\bigcup_{\left(a,\left(b, c^{\prime}\right)\right) \in g_{1}}(a, b)=\bigcup_{\left(a,\left(b, c^{\prime \prime}\right)\right) \in g_{2}}(a, b)\right) \wedge\left(r=\bigcup_{\left(a,\left(b^{\prime}, c\right)\right) \in g_{1}}(a, c)=\right.$ $\left.\bigcup_{\left(a,\left(b^{\prime \prime}, c\right)\right) \in g_{2}}(a, c)\right)$

Pick an arbitrary $(a,(b, c)) \in g_{1}$, we want to show that it also belongs to g_{2}. $(a,(b, c)) \in g_{1} \wedge f\left(g_{1}\right)=f\left(g_{2}\right) \Longrightarrow \exists\left(a,\left(b, c^{\prime}\right)\right) \in g_{2} \wedge \exists\left(a,\left(b^{\prime}, c\right)\right) \in g_{2}$
since g_{2} is a function, we know that $g_{2}(a)=\left(b, c^{\prime}\right)=\left(b^{\prime}, c\right) \Longrightarrow b=b^{\prime} \wedge c=c^{\prime}$
Hence $(a,(b, c)) \in g_{2}$ and $g_{1} \subseteq g_{2}$. Since the proof can be done backwards too, $g_{1}=g_{2}$.
2. Surjective

Pick an arbitrary $(h, r) \in((A \rightarrow B) \times(A \rightarrow C))$ and construct a function
$g_{(h, r)}=\{(a,(b, c)) \mid b=h(a) \wedge c=r(a)\}$
then, by properties of functions $h, r, \operatorname{dom}\left(g_{(h, r)}\right)=A$ and $\operatorname{range}\left(g_{(h, r)}\right) \subseteq$ $(B \times C)$ therefore $g_{(h, r)} \in((A \rightarrow(B \times C))$.

By construction, $f\left(g_{(h, r)}\right)=(h, r)$. Given that (h, r) has been chosen arbitrarily, we can conclude that f is surjective.
$\Longrightarrow f$ is injective, surjective and bijective.

