Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

...

TRIVIA: $f \circ g \in (B \to B), (f \circ g)(b) = f(g(b)).\forall b \in B, g \circ f \in (A \to A), (g \circ f)(a) = g(f(a)).\forall a \in A$

TRIVIA: $id_B \in (B \to B), id_B(b) = b.\forall b \in B, id_A \in (A \to A), id_A(a) = a.\forall a \in A$

DEMONSTRATION:

1. Injectivity

By definition, a (total) function is a relation that maps an input of the domain in exactly one point of the codomain.

Let's suppose for contraddiction that there exist two elements a_1, a_2 such that $b = f(a_1)$ and $b = f(a_2)$ with $a_1 \neq a_2$.

Since $g \circ f = id_A$, we have that $g(f(a_1)) = g(b) = a_1$ and $g(f(a_2)) = g(b) = a_2$.

However, g is a (total) function therefore there must exist only one element $a \in A$ such that g(b) = a.

Hence $a_1 = a_2$.

2. Surjectivity

Let's suppose for contraddiction that $\exists b \in B. \forall a \in A. f(a) \neq b$.

Then for this element b we have that $f \circ g(b) \neq b$, otherwise it would exist an $a \in A$ such that $id_B(b) = f \circ g(b) = f(g(b)) = f(a) = b$. \perp (this is exactly one of our preliminary hyphotesis)

Hence, f is surjective (same holds for g)

3. Injective && Surjective => Bijective.

2 Question

Let A, B be sets, and let $f \in (A \leftrightarrow B)$ be a bijection. Define a bijection $g \in (\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

...

$$\begin{split} g: \mathcal{P}(A) &\leftrightarrow \mathcal{P}(B), g = \{(A', B') | A' \in \mathcal{P}(A) \land B' \in \mathcal{P}(B) \land B' = \bigcup_{a' \in A'} f(a') \}.\\ (\text{RZ: maybe } g = \{(A', B') | A' \in \mathcal{P}(A) \land B' \in \mathcal{P}(B) \land B' = \{f(a') \mid a' \in A'\} \}\\ \text{is a more clear notation} \end{split}$$

1. Injectivity

Let's suppose for contraddiction that there exist two elements $A_1, A_2 \in \mathcal{P}(A)$ such that $B' = g(A_1)$ and $B' = g(A_2)$ $(B' \in \mathcal{P}(B))$ with $A_1 \neq A_2$.

 $A_1 \neq A_2 \Longrightarrow \exists a \in (A_1 \cup A_2) \setminus (A_1 \cap A_2) \Longrightarrow \exists b \in B.b = f(a).$ (since $a \in A$) Without loss of generality, let's suppose $a \in A_1$.

Then by definition of g, $(A_1, B') \in g \Longrightarrow b \in B'$ and also $b \in B' \land (A_2, B') \in g \Longrightarrow a = f^{-1}(b) \in A_2$, contraddiction.

Hence, g is injective.

2. Surjectivity

Let's suppose for contraddiction that $\exists B' \in \mathcal{P}(B). \forall A' \in \mathcal{P}(A).g(A') \neq B'.$

Since f is a bijection, it has an inverse $f^{-1} \in (B \leftrightarrow A)$. So, let's define a new set parametric in B':

 $A_{B'} = \{a \in A | \exists b \in B'.a = f^{-1}(b)\}$. It's easy to see that $A_{B'} \subseteq A$ (hence $A_{B'} \in \mathcal{P}(A)$), and that $B' = \bigcup_{a \in A_{B'}} f(a)$.

But this means that $(A_{B'}, B') \in g$, since we have fulfilled all the requirements. Contraddiction.

Hence, g is surjective.

3. Injective && Surjective => Bijective

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup \{b\})$. Prove that is is such.

3.1Answer

Since I've a narrowed imagination, i want to verify in advance that such a bijection might exist.

THEOREM: Among two finite sets there exists a bijection if and only if they have the same cardinality.

So let's do some preliminary considerations, in case A, B are finite sets:

a. The set of total functions $(A \to B)$ has cardinality $|(A \to B)| = |B|^{|A|}$, with no restrictions of type "surjectivity/injectivity".

b. The set of partial functions $(A \rightsquigarrow B)$ has cardinality $|(A \rightsquigarrow B)| =$ $1+\sum_{i=1}^{|A|} |B|^i \frac{|A|!}{(|A|-i)!i!}$, with no restrictions of type "surjectivity/injectivity". [first "1" accounts for the empty function]

c. The BINOMIAL FORMULA states $(1+x)^n = \sum_{i=0}^n x^i \frac{n!}{(n-i)!i!}$, therefore...

d. ..the set of total functions $(A \to B \cup \{b\})$, $b \notin B$, has cardinality $|(A \to B \cup \{b\})| = (1 + |B|)^{|A|} = \sum_{i=0}^{|A|} |B|^i \frac{|A|!}{(|A|-i)!i!} = 1 + \sum_{i=1}^{|A|} |B|^i \frac{|A|!}{(|A|-i)!i!}$ Note: I've calculated these formulas without the support of references, so I

advice you to be suspicious and verify them.

Trusting my estimations, one can conclude that such a bijection exists in the case of finite sets.

That's great,. With this renewed selfconfidence let's try to think harder to the (obvious) example.

A possible bijection could be $f = \{(h, g) | h : (A \rightsquigarrow B) \land g : (A \to B \cup \{b\}) \land$ $h = \{(x, y) | x \in A \land y \in B \land (x, y) \in g\}\}, f : ((A \rightsquigarrow B) \leftrightarrow (A \rightarrow B \cup \{b\})).$

Intuitively, two functions $h: (A \rightsquigarrow B), g: (A \to B \cup \{b\})$ are in relation by means of f iff the partial function h is the restriction of g on $(A \rightsquigarrow B)$.

So let's try to demonstrate that f is bijective:

1. Injectivity

Let $h_1, h_2 \in (A \rightsquigarrow B)$ be s.t. $f(h_1) = f(h_2) = g \in (A \to B \cup \{b\})$, we want to show that $h_1 = h_2$ follows necessarily.

 $g = f(h_1) = f(h_2) \Longrightarrow (h_1, g) \in f \land (h_2, g) \in f \Longrightarrow h_1 = h_2 = \{(x, y) | x \in f \land (h_1, g) \in f \land (h_2, g) \cap (h_2, g) \in f \land ($ $A \land y \in B \land (x, y) \in g\}$

2. Surjectivity

Let's take an arbitrary $g \in (A \to B \cup \{b\})$, and build its own restriction $z_q = \{(x, y) | x \in A \land y \in B \land (x, y) \in g\}.$

By definition of z_g , $dom(z_g) \subseteq A$ and $range(z_g) \subseteq B$, so it is a partial function belonging to $(A \rightsquigarrow B)$.

3. Totality

It is important to remark that f is total over the set $(A \rightsquigarrow B)$, and this follows intuitively by the observation that one can build

a total function $g: (A \to B \cup \{b\})$ starting from $h: (A \rightsquigarrow B)$ using the following definition

 $g_h = \{(x, y) | x \in A \land y \in B \land ((x, y) \in h \lor y = b)\}$

which univocally associates a function g_h to each h. You can think of $\{b\}$ as a marker that states wherever h is undefined.

3. Injectivity & Surjectivity => Bijectivity

To conclude, let's observe that the definition of f is absolutely general and makes no assumptions on the cardinality

of the sets. Therefore it can be used also for infinite sets.

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in [(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

•••

Again, we may repeat some cardinality considerations for the finite sets case: a. $|(\mathcal{P}(A) \times \mathcal{P}(B)| = |\mathcal{P}(A)| \times |\mathcal{P}(B)| = 2^{|A|} + 2^{|B|} = 2^{|A|+|B|}$

b. $|\mathcal{P}(A \uplus B)| = 2^{|A \uplus B|} = 2^{|A| + |B|}$

the cardinality is equal in both cases, therefore there exists a bijection among the two sets.

TRIVIA: if A is a set, then $A \times \emptyset = \emptyset$.

So let's try to define one, assuming the existence of two arbitrary (possibly infinite) sets A, B:

$$\begin{split} f_{A,B} &= \{(X,Y) | (X = (A',B') \land A' \subseteq A \land B' \subseteq B) \Longrightarrow Y = (\bigcup_{a \in A'} < a, 0 >) \cup (\bigcup_{b \in B'} < b, 1 >) \}, \, f : (\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B) \\ 1. \text{ Injectivity} \end{split}$$

Suppose $X_1, X_2 \in (\mathcal{P}(A) \times \mathcal{P}(B))$ and $Y = f_{A,B}(X_1) = f_{A,B}(X_2) \in \mathcal{P}(A \uplus B)$.

 $\begin{array}{l} f_{A,B}(X_1) = f_{A,B}(X_2) \\ \Longrightarrow X_1 = (A',B') \land X_2 = (A'',B'') \land Y = (\bigcup_{a \in A'} < a, 0 >) \cup (\bigcup_{b \in B'} < b, 1 >) \\ = (\bigcup_{a \in A'} < a, 0 >) \cup (\bigcup_{b \in B''} < b, 1 >) \\ \Longrightarrow (\bigcup_{a \in A'} < a, 0 >) = (\bigcup_{a \in A''} < a, 0 >) \land (\bigcup_{b \in B'} < b, 1 >) = (\bigcup_{b \in B''} < b, 1 >) \\ \end{array}$

b, 1 > [I left behind some obvious steps that lead to the next one] $\implies A' = A^{"} \land B' = B^{"} \implies X_1 = (A', B') = (A^{"}, B^{"}) = X_2$ 2. Surjectivity

Let's take an arbitrary $Y \in \mathcal{P}(A \uplus B)$ and construct $X = \{(A', B') | A' = (\bigcup_{\langle a, 0 \rangle \in Y} a) \land B' = (\bigcup_{\langle b, 1 \rangle \in Y} b) \}.$

It's easy to see that $A' \subseteq A$ and $B' \subseteq B$, therefore $X \in (\mathcal{P}(A) \times \mathcal{P}(B))$ and $f_{A,B}(X) = Y$.

 $\implies f_{A,B}$ is injective, surjective and bijective.

5 Question

Define a bijection $f \in [((A \uplus B) \to C) \leftrightarrow ((A \to C) \times (B \to C))]$. Prove that is is such.

5.1 Answer

...

Again, let's try to repeat some cardinality analysis in the case of finite sets. a. $|(A \uplus B) \to C)| = |C|^{|(A \uplus B)|} = |C|^{(|A|+|B|)}$

b. $|(A \to C) \times (B \to C)| = |(A \to C)| \times |(B \to C)| = |C|^{|A|} \times |C|^{|B|} = |C|^{(|A|+|B|)}$

since the cardinalities coincide, we may conclude that such a bijection exists (at least) in the case of finite sets.

Good. Let A, B, C be arbitrary (possibly infinite) sets, and $g: ((A \uplus B) \to C), h: (A \to C), r: (B \to C)$ be placeholders for any function of that type.

Then a bijective $f\in [((A\boxplus B)\to C)\leftrightarrow ((A\to C)\times (B\to C))]$ can be defined as:

 $f = \{(g,(h,r)) | h = \{(a,c) | (< a, 0 >, c) \in g\} \land r = \{(b,c) | (< b, 1 >, c) \in g\}\}$ 1. Injective

Let $g_1, g_2 \in ((A \uplus B) \to C)$ and

 $(h,r) = f(g_1) = f(g_2) \in ((A \to C) \times (B \to C))$

 $\implies (h = \{(a,c) | (< a, 0 >, c) \in g_1\} = \{(a,c) | (< a, 0 >, c) \in g_2\}) \land (r = \{(b,c) | (< b, 1 >, c) \in g_1\} = \{(b,c) | (< b, 1 >, c) \in g_2\})$

 $\implies (\neg \exists (a,c) \in h. (< a, 0 >, c) \in (g_1 \cup g_2) \setminus (g_1 \cap g_2)) \land (\neg \exists (b,c) \in r. (< b, 1 > , c) \in (g_1 \cup g_2) \setminus (g_1 \cap g_2))$

 $\implies g_1 = g_2$

2. Surjective

Pick an arbitrary $(h,r) \in ((A \to C) \times (B \to C))$, it's possible to define a function

 $g_{(h,r)} = \{(x,c) | (x = < a, 0 > \land (a,c) \in h) \lor (x = < b, 1 > \land (b,c) \in r) \}$

It's easy to see, by the properties of functions h, r, that $dom(g_{(h,r)}) = (A \uplus B)$ and $range(g_{(h,r)}) \subseteq C$, $\Longrightarrow g_{(h,r)} \in ((A \uplus B) \to C)$.

By construction, $f(g_{(h,r)}) = (h, r)$. Given that (h, r) has been chosen arbitrarily, we can conclude that f is surjective.

 \implies f is injective, surjective and bijective.

6 Question

Define a bijection $f \in [((A \to (B \times C)) \leftrightarrow ((A \to B) \times (A \to C))]$. Prove that is is such.

6.1 Answer

•••

Cardinality Analisys, for finite sets case:

a. $|(A \rightarrow (B \times C))| = |(B \times C)|^{|A|} = (|B| \times |C|)^{|A|}$

b. $|(A \to B) \times (A \to C)| = |(A \to B)| \times |(A \to C)| = |B|^{|A|} \times |C|^{|A|} = (|B| \times |C|)^{|A|}$

since the cardinalities coincide, we may conclude that such a bijection exists (at least) in the case of finite sets.

Let A, B, C be arbitrarily chosen (possibly infinite) sets, and $g : (A \to (B \times C)), h : (A \to C), r : (A \to C)$ be placeholders for any function of the specified type.

Then a bijective $f \in [((A \to (B \times C)) \leftrightarrow ((A \to B) \times (A \to C))]$ can be defined as:

$$\begin{split} f &= \{(g,(h,r))|h = \bigcup_{(a,(b,c)) \in g}(a,b) \land r = \bigcup_{(a,(b,c)) \in g}(a,c)\} \\ 1. \text{ Injective} \\ \text{Let } g_1, g_2 \in (A \to (B \times C)) \text{ and} \\ (h,r) &= f(g_1) = f(g_2) \in ((A \to B) \times (A \to C)) \\ \implies (h = \bigcup_{(a,(b,c')) \in g_1}(a,b) = \bigcup_{(a,(b,c'')) \in g_2}(a,b)) \land (r = \bigcup_{(a,(b',c)) \in g_1}(a,c) = \\ \bigcup_{(a,(b'',c)) \in g_2}(a,c)) \\ \text{Pick an arbitrary } (a,(b,c)) \in g_1, \text{ we want to show that it also belongs to } g_2. \\ (a,(b,c)) \in g_1 \land f(g_1) = f(g_2) \Longrightarrow \exists (a,(b,c')) \in g_2 \land \exists (a,(b',c)) \in g_2 \end{split}$$

since g_2 is a function, we know that $g_2(a) = (b, c') = (b', c) \Longrightarrow b = b' \land c = c'$ Hence $(a, (b, c)) \in g_2$ and $g_1 \subseteq g_2$. Since the proof can be done backwards too, $g_1 = g_2$.

2. Surjective

Pick an arbitrary $(h, r) \in ((A \to B) \times (A \to C))$ and construct a function $g_{(h,r)} = \{(a, (b, c)) | b = h(a) \land c = r(a)\}$

then, by properties of functions $h, r, dom(g_{(h,r)}) = A$ and $range(g_{(h,r)}) \subseteq (B \times C)$ therefore $g_{(h,r)} \in ((A \to (B \times C)))$.

By construction, $f(g_{(h,r)}) = (h, r)$. Given that (h, r) has been chosen arbitrarily, we can conclude that f is surjective.

 \implies f is injective, surjective and bijective.

VYGER