Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

injective:
assume $f(x)=f(y), x, y \in A$
then $g(f(x))=g(f(y))$
as $g \circ f=\operatorname{id}_{A}, i d_{A}(x)=x$
$g(f(x))=x=g(f(y))=y$
So $x=y f$ is injective.
surjective: $\forall z \in B \quad i d_{B}(z)=f(g(z))=z$
so $\exists a \in A$, take $a=g(z), f(a)=z$
So f is surjective.

2 Question

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

$g=\left\{\left(A^{\prime}, B^{\prime}\right) \mid A^{\prime} \subseteq A, \forall a \in A^{\prime}, B=\{b \mid b=f(a)\}\right\}$
(RZ: the \forall is wrong, you actually want $g=\left\{\left(A^{\prime}, B^{\prime}\right) \mid A^{\prime} \subseteq A, B=\{b \mid \exists a \in\right.$ $\left.\left.\left.A^{\prime} . b=f(a)\right\}\right\}\right)$
injective: assume $g(C)=g(D), C, D \subseteq A$
$g(C)=\{b \mid \forall a \in C, b=f(a)\}$
$g(D)=\{b \mid \forall a \in D, b=f(a)\}$
as f is bijection, all elements in C, D are same
so $C=D g$ is injective
surjective:for any $b \in B^{\prime} \subseteq B$
$a=f^{-}(b)$
$\exists A^{\prime}=\left\{a \mid a=f^{-}(b)\right\}, g\left(A^{\prime}\right)=B$
so g is suijective

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that is is such.

3.1 Answer

$f=\left\{(g, t) \mid g \subseteq A \times B, \exists A^{\prime} \subseteq A, g \in\left(A^{\prime} \rightarrow B\right) . \forall a \in A, i f a \in A^{\prime}, t=\right.$ $g, \operatorname{elseg}(a)=b\}$
(RZ: maybe something like
$f=\left\{(g, t) \mid g \subseteq A \times B, \exists A^{\prime} \subseteq A, g \in\left(A^{\prime} \rightarrow B\right) . \forall a \in A\right.$, if $a \in A^{\prime}, t(a)=$ $g(a)$, else $t(a)=b\})$
for each g, there is only one t, which is equal to g, if $a \in A^{\prime}$
for each $t, \exists g$, which is equal to t in the case of $a \in A^{\prime}$

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in[(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

$f=\{((C, D), E) \mid C \subseteq A, D \subseteq B, E=\{(0, a) \mid a \in C\} \cup\{(1, b) \mid b \in D\}\}$
injective: for, each (C, D), there is only one E whose elements of a, b composing C, D respectively.
surjective:for each E , there is (C, D) which are made up of a, b in E .

5 Question

Define a bijection $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$. Prove that is is such.

5.1 Answer

$f=\{((<0, a><1, b>), c),(<a, c>,<b, c>) \mid a \in A, b \in B, c \in C\}$
proof is the similar with above
(RZ: no)

6 Question

Define a bijection $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$. Prove that is is such.

6.1 Answer

$f=\{(a,(b, c)),((a, b),(a, c)) \mid a \in A, b \in B, c \in C\}$
proof is the similar with above
(RZ: no)

