Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let id_A, id_B denote the identity functions over A and B respectively. Assume $f \in (A \to B)$ and $g \in (B \to A)$ be functions satisfying $g \circ f = id_A$ and $f \circ g = id_B$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

injective: assume $f(x) = f(y), x, y \in A$ then g(f(x)) = g(f(y))as $g \circ f = id_A, id_A(x) = x$ g(f(x)) = x = g(f(y)) = ySo x = y f is injective.

> surjective: $\forall z \in B$ $id_B(z) = f(g(z)) = z$ so $\exists a \in A$, take a = g(z), f(a) = zSo f is surjective.

2 Question

Let A, B be sets, and let $f \in (A \leftrightarrow B)$ be a bijection. Define a bijection $g \in (\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

 $g = \{(A', B') | A' \subseteq A, \forall a \in A', B = \{b | b = f(a)\}\}$ (RZ: the \forall is wrong, you actually want $g = \{(A', B') | A' \subseteq A, B = \{b \mid \exists a \in A'. b = f(a)\}\}$)
injective: assume $g(C) = g(D), C, D \subseteq A$ $g(C) = \{b | \forall a \in C, b = f(a)\}$ $g(D) = \{b | \forall a \in D, b = f(a)\}$ as f is bijection, all elements in C, D are same
so C = D g is injective
surjective:for any $b \in B' \subseteq B$ $a = f^-(b)$ $\exists A' = \{a | a = f^-(b)\}, g(A') = B$ so g is sujjective

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup \{b\})$. Prove that is is such.

3.1 Answer

 $\begin{array}{l} f \ = \ \{(g,t)|g \ \subseteq \ A \times B, \exists A^{'} \ \subseteq \ A,g \ \in \ (A^{'} \ \rightarrow \ B). \forall a \ \in \ A, ifa \ \in \ A^{'},t \ = \\ g,elseg(a) = b\} \\ (\text{RZ: maybe something like} \\ f \ = \ \{(g,t)|g \ \subseteq \ A \times B, \exists A^{'} \ \subseteq \ A,g \ \in \ (A^{'} \ \rightarrow \ B). \forall a \ \in \ A, if \ a \ \in \ A^{'}, \ t(a) \ = \\ g(a),else \ t(a) \ = b\}) \\ \text{for each } g, \text{there is only one } t, \text{which is equal to } g, \text{if } a \ \in \ A^{'} \\ \text{for each } t, \exists g, \text{which is equal to } t \ in \ the \ case \ of \ a \ \in \ A^{'} \end{array}$

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in [(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that is is such.

4.1 Answer

 $\begin{aligned} f &= \{ ((C,D),E) | C \subseteq A, D \subseteq B, E = \{ (0,a) | a \in C \} \cup \{ (1,b) | b \in D \} \} \\ &\text{injective: for,each } (C,D), \text{there is only one } E \text{ whose elements of } a, b \text{ composing } C, D \text{ respectively.} \end{aligned}$

surjective: for each E, there is (C, D) which are made up of a, b in E.

5 Question

Define a bijection $f \in [((A \uplus B) \to C) \leftrightarrow ((A \to C) \times (B \to C))]$. Prove that is is such.

5.1 Answer

 $f = \{((<0, a > < 1, b >), c), (< a, c >, < b, c >) | a \in A, b \in B, c \in C\}$ proof is the similar with above (RZ: no)

6 Question

Define a bijection $f \in [((A \to (B \times C)) \leftrightarrow ((A \to B) \times (A \to C))]$. Prove that is is such.

6.1 Answer

 $f = \{(a, (b, c)), ((a, b), (a, c)) | a \in A, b \in B, c \in C\}$ proof is the similar with above (RZ: no)