Computability Assignment Year 2012/13 - Number 3

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments
Please do not submit a file containing only the answers; edit this file, instead, filling the answer sections.

1 Question

Let A, B be sets, and let $\mathrm{id}_{A}, \mathrm{id}_{B}$ denote the identity functions over A and B respectively. Assume $f \in(A \rightarrow B)$ and $g \in(B \rightarrow A)$ be functions satisfying $g \circ f=\operatorname{id}_{A}$ and $f \circ g=\operatorname{id}_{B}$. Prove that f is a bijection (i.e., injective and surjective).

1.1 Answer

By contradiction. (injective) Suppose f is not injective, $\exists a_{1}, a_{2} \in A . a_{1} \neq$ $a_{2} . f\left(a_{1}\right)=f\left(a_{2}\right)=b \in B$, and we have $g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)=g(b)$, but since the composite function is an identity function, we also have $g \circ f\left(a_{1}\right)=a_{1} \neq$ $g \circ f\left(a_{2}\right)=a_{2}$, this is a contradiction.
(surjective) Suppose f is not surjective, $\exists b \in B . \nexists a \in A . f(a)=b$, but since $f \circ g(b)=b$, i.e. $\exists a \in A . g(b)=a \wedge f(a)=b$, such a exists.

2 Question

Let A, B be sets, and let $f \in(A \leftrightarrow B)$ be a bijection. Define a bijection $g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B))$ and prove it is such.

2.1 Answer

We define $g: X \rightarrow Y, Y=\{f(a) \mid a \in X\} .(\mathrm{RZ}: g \in(\mathcal{P}(A) \leftrightarrow \mathcal{P}(B)), g(X)=$ $\{f(a) \mid a \in X\}$)

By contradiction. (injective) Say $\exists X_{1} \neq X_{2} \in \mathcal{P}(A), g\left(X_{1}\right)=g\left(X_{2}\right)$, but since f is a bijection, $g\left(X_{1}\right) \neq g\left(X_{2}\right)$.
(RZ: OK, but why?)
(surjective) Say $\exists Y \in \mathcal{P}(B) . \nexists X \in \mathcal{P}(A) . g(X)=Y$, but we can build such a $X=\{a \mid f(a)=y \wedge y \in Y\} \subseteq A$.

3 Question

Let A, B be two sets, and let $b \notin B$. Define a bijection f between the set of partial functions $(A \rightsquigarrow B)$ and the set of total functions $(A \rightarrow B \cup\{b\})$. Prove that it is such.

3.1 Answer

A partial function in $(A \rightsquigarrow B)$ can be written as

$$
p(x)= \begin{cases}y & y \in B \\ \text { undefined } & \end{cases}
$$

(RZ: this notation is a bit misleading)
We keep the mapping of the defined ones. We map all the rest on to b to make it total.

$$
f(p)(x)= \begin{cases}p(x) & x \text { is defined on } p \\ b & x \text { is undefined on } p\end{cases}
$$

We prove it is a bijection. (injective) Two partial functions differ only on the defined parts, by the above construction, they remain different. i.e. $\nexists p_{1} \neq$ $p_{2} . f\left(p_{1}\right)=f\left(p_{2}\right)$. (RZ: a bit more detail?)
(surjective) We can always find a pre-image for a total function in $(A \rightarrow$ $B \cup\{b\})$ by let those mapped to b be undefined. In the case of $g: A \rightarrow B$, the pre-image of g is g itself, which is a special case of partial functions.

Note.

The exercises below are harder. Feel free to skip them if you find them too hard.

4 Question

Define a bijection $f \in[(\mathcal{P}(A) \times \mathcal{P}(B)) \leftrightarrow \mathcal{P}(A \uplus B)]$. Prove that it is such.

4.1 Answer

Consider $S_{A} \in \mathcal{P}(A), S_{B} \in \mathcal{P}(B)$, we define f as

$$
f\left(\left\langle S_{A}, S_{B}\right\rangle\right)=\left\{\langle 0, a\rangle \mid a \in S_{A}\right\} \cup\left\{\langle 1, b\rangle \mid b \in S_{B}\right\}
$$

f is injective. $\forall\left\langle S_{A}, S_{B}\right\rangle \neq\left\langle T_{A}, T_{B}\right\rangle$, we have $f\left(\left\langle S_{A}, S_{B}\right\rangle\right) \neq f\left(\left\langle T_{A}, T_{B}\right\rangle\right)$ since they are disjointed, and the difference remains.
f is surjective. $\forall S_{A \uplus B} \in \mathcal{P}(A \uplus B)$, we can build $S_{A}=\left\{a \mid\langle 0, a\rangle \in S_{A \uplus B}\right\}, S_{B}=$ $\left\{b \mid\langle 1, b\rangle \in S_{A \uplus B}\right\}$, and $\left\langle S_{A}, S_{B}\right\rangle \in \mathcal{P}(A) \times \mathcal{P}(B)$.

5 Question

Define a bijection $f \in[((A \uplus B) \rightarrow C) \leftrightarrow((A \rightarrow C) \times(B \rightarrow C))]$. Prove that it is such.

5.1 Answer

Consider $g \in((A \uplus B) \rightarrow C), h \in(A \rightarrow C), j \in(B \rightarrow C)$. We define such an f.

$$
f(g)=(h, j) \text { where } h(a)=c \text { iff } g(\langle 0, a\rangle)=c, j(b)=c^{\prime} \text { iff } g(\langle 1, b\rangle)=c^{\prime}
$$

f is injective. Assume $f\left(g_{1}\right)=f\left(g_{2}\right)=(h, j)$, then $\forall a \in A \cdot g_{1}(\langle 0, a\rangle)=$ $g_{2}(\langle 0, a\rangle)=h(a)$, the same applies for $\forall b \in B$, which suggests $g_{1}=g_{2}$.
f is surjective. By the construction of f, we can always build a g for any (h, j).

6 Question

Define a bijection $f \in[((A \rightarrow(B \times C)) \leftrightarrow((A \rightarrow B) \times(A \rightarrow C))]$. Prove that it is such.

6.1 Answer

Consider $g \in(A \rightarrow(B \times C), h \in(A \rightarrow B), j \in(A \rightarrow C)$, we define such an f.

$$
f(g)=(h, j) \text { where } h(a)=b, j(a)=c \text { iff } g(a)=(b, c)
$$

We show f is injective. Assume $f\left(g_{1}\right)=f\left(g_{2}\right)=(h, j)$, then $\forall a \in A \cdot g_{1}(a)=$ $g_{2}(a)=(h(a), j(a))$, which means $g_{1}=g_{2}$.
(Surjective) Similarly, we can always build a g for any (h, j).

