Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $\bullet \ A \times B = \emptyset$

1.1 Answer

The Result of the cartesian product between 2 empty sets is empty because cannot be formed order pair,

for e.g:

- $A \times B = \{ \emptyset \{ \emptyset \} \} = \emptyset$; according with the definition of cartesian product which states $A \times B = \{ \langle a, b \rangle | a \epsilon A \land b \epsilon B \}$
- $a \notin A \land b \notin B = \emptyset \iff \neg (a \in A) \land \neg (b \in B) = \emptyset$ $\neg \exists a(a \in A) \land \neg \exists b(b \in B) = \emptyset$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i \mid i \in \mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all *i*, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

1. $p_1: \forall k \in \mathbb{N}.A_k = \bigcup_{i=0}^k A_i$ - the hypothesis (*) is sufficient to conclude that p_i holds;

- $A_k = \{0, 1, 2, ..., k\} / /$ this is a Set of sets.
- $A_i = \{x : \forall i \in A_k \ (x \le k)\}$

