Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $A \times B = \emptyset$

1.1 Answer

Since we have A x B = {< x,y > | x ∈ A ∧ y ∈ B } \Rightarrow if A x B = ∅ \Longleftrightarrow A = ∅ ∨ B = ∅ or \Longleftrightarrow A = ∅ ∧ B = ∅

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty}A_i=\bigcup\{A_i\mid i\in\mathbb{N}\}$ and $\bigcup_{i=0}^kA_i=\bigcup\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cup A_1\cup\cdots\cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or

• the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

- 1. (*) is sufficient to say that p1 holds. Proof: $\forall k \in \mathbb{N}. \ A_k = \bigcup_{i=0}^k A_i \ if \ k = 0 \Rightarrow A_0 = A_0$ if $k = n \ from \ (*) \ we \ have \ A_n = A_{1 \cup ... \cup} A_n \ but \ for \ definition \ the \ Set \ A_n \ contains \ every \ previous \ set.$ The equlity $A_n = A_n \ holds$, that implies $A_k = \bigcup_{i=0}^k A_i$
- 2. (*) is sufficient to say that p2 doesn't hold. From (*) we have $A_i \subseteq \mathbb{N}$ $A_{i+1} \subseteq \mathbb{N}$. If we choosen the case with $A_i \setminus \{0\}$ and $A_{i+1} \setminus \{1\}$ the property p2 is false.
- 3. (*) is sufficient to say that p3 doesn't hold. $A_i \neq A_{i+1} \Rightarrow A_i \subset A_{i+1} \ from \ (*)$ but if $we \ choosen \ A_1 \setminus \{0\} \Rightarrow \bigcup_{i=0}^{\infty} A_i \neq \mathbb{N}$
- 4. (*) Is not sufficient because we can have $\forall i \in \mathbb{N} A_i \subset A_{i+1} \Rightarrow \bigcup_{i=0}^{\infty} A_i \text{ is not finite.}$ otherwise if we have $\forall i \in \mathbb{N} A_i = A_{i+1} \Rightarrow \bigcup_{i=0}^{\infty} A_i \text{ is finite.}$