Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset$
- $A \times B=\emptyset$

1.1 Answer

If $A=\emptyset$: there is no element in A to create $<a, b>\in A \times B$, therefore $A \times B$ is empty; the same goes if $B=\emptyset$.

If $A \times B=\emptyset$: there is no couple $<a, b>$ in the cross product, either the first element a in missing (meaning $A=\emptyset$) or the second element b is (meaning $B=\emptyset$). They both could be missing, of course.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. p_{2} : for all i, if A_{i} is infinite, then $A_{i}=A_{i+1}$
3. p_{3} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

3.1 Answer

Write your answer here.

1. (*) states that $A_{i} \subseteq A_{i+1} \forall i \in \mathbb{N}$, so $A_{k-1} \equiv \bigcup_{i=0}^{k-1} A_{i} \subseteq A_{k}$ and $A_{k-1} \cup$ $A_{k} \equiv A_{k}$, so p_{1} holds;
2. even if $\left|A_{i}\right|=\infty$, it could be that $A_{i} \neq A_{i+1}$; for example, $A_{i} \equiv$ $\{x \mid x$ is even $\}, A_{i+1} \equiv\{x \mid x$ is even $\vee x=1\}$, they both are infinite and $A_{i} \subset A_{i+1}$ but $A_{i} \neq A_{i+1}: p_{2}$ doesn't hold;
3. $\forall i \in \mathbb{N} . A_{i+1} \neq A_{i}$ but also (thanks to $\left.(*)\right) A_{i} \subseteq A_{i+1}$, so $\exists a \in A_{i+1} . a \notin A_{i}$. Every set is bigger than its predecessor, so eventually $A_{i}=\mathbb{N}$ (for some i) and the union of them all is equal to \mathbb{N}, so p_{3} holds;
4. for 1., $A_{k}=\bigcup_{i=0}^{k} A_{i}$. If A_{i} is finite $\forall i \in \mathbb{N}$, then A_{k} also is finite, so p_{4} holds;
5. contraddiction with 4., p_{5} doesn't hold;
6. similar to 4.; $A_{k}=\bigcup_{i=0}^{k} A_{i}(1$.$) , so if A_{i}$ is infinite $\forall i \in \mathbb{N}$, then A_{k} is also infinite, so p_{6} holds.
