Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $\bullet \ A \times B = \emptyset$

1.1 Answer

If $A = \emptyset$: there is no element in A to create $\langle a, b \rangle \in A \times B$, therefore $A \times B$ is empty; the same goes if $B = \emptyset$.

If $A \times B = \emptyset$: there is no couple $\langle a, b \rangle$ in the cross product, either the first element a in missing (meaning $A = \emptyset$) or the second element b is (meaning $B = \emptyset$). They both could be missing, of course.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i \mid i \in \mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all *i*, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

Write your answer here.

- 1. (*) states that $A_i \subseteq A_{i+1} \forall i \in \mathbb{N}$, so $A_{k-1} \equiv \bigcup_{i=0}^{k-1} A_i \subseteq A_k$ and $A_{k-1} \cup A_k \equiv A_k$, so p_1 holds;
- 2. even if $|A_i| = \infty$, it could be that $A_i \neq A_{i+1}$; for example, $A_i \equiv \{x | x \text{ is even}\}, A_{i+1} \equiv \{x | x \text{ is even} \lor x = 1\}$, they both are infinite and $A_i \subset A_{i+1}$ but $A_i \neq A_{i+1}$: p_2 doesn't hold;
- 3. $\forall i \in \mathbb{N}. A_{i+1} \neq A_i$ but also (thanks to(*)) $A_i \subseteq A_{i+1}$, so $\exists a \in A_{i+1}. a \notin A_i$. Every set is bigger than its predecessor, so eventually $A_i = \mathbb{N}$ (for some *i*) and the union of them all is equal to \mathbb{N} , so p_3 holds;
- 4. for 1., $A_k = \bigcup_{i=0}^k A_i$. If A_i is finite $\forall i \in \mathbb{N}$, then A_k also is finite, sop₄holds;
- 5. contraddiction with 4., p_5 doesn't hold;
- 6. similar to 4.; $A_k = \bigcup_{i=0}^k A_i$ (1.), so if A_i is infinite $\forall i \in \mathbb{N}$, then A_k is also infinite, so p_6 holds.