Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.

More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $A \times B = \emptyset$

1.1 Answer

$$A = \emptyset \lor B = \emptyset \Longleftrightarrow A \times B = \emptyset$$

$$A = \emptyset \lor B = \emptyset \Longrightarrow A \times B = \emptyset$$
Assume by contradiction
$$A \times B \neq \emptyset$$

for the definition of cartesian product $A \times B = \{ \langle x, y \rangle \mid x \in A \land y \in B \}$ both A and B cannot be empty. This is a contradiction.

$$A \times B = \emptyset \Longrightarrow A = \emptyset \vee B = \emptyset$$

Assume by contradiction

$$A \neq \emptyset \land B \neq \emptyset$$

now if I apply the cartesian product $A \times B$ the result isn't an empty set but this is a contradiction.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty}A_i=\bigcup\{A_i\mid i\in\mathbb{N}\}$ and $\bigcup_{i=0}^kA_i=\bigcup\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cup A_1\cup\cdots\cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

1. the hypothesis (*) is sufficient to conclude that p_i holds since A_k already contains all A_i with i < k and the union doesn't add anything.