Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset$
- $A \times B=\emptyset$

1.1 Answer

$p:(A=\emptyset \vee B=\emptyset) \Longleftrightarrow(A \times B=\emptyset)$
(\Longrightarrow) Suppose that $A=\emptyset$, the def of $A \times B=\{<x, y>\mid x \in A \wedge y \in B\}=C$ but by hypothesis A is empty so no such x exists. This implies that no couples can be formed to populate C, hence $C=A \times B=\emptyset$.
(\Longleftarrow) If $A \times B=\emptyset$ then (taking the definition above) no couples $\langle x, y\rangle$ exists. This implies that the formula $(x \in A \wedge y \in B)$ is false so one of the two statement is false $(x \notin A \vee y \notin B)$ but this is impossible by def of $A \times B$ so the only possibility is $A=\emptyset \vee B=\emptyset$.

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property p_{i} shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. p_{2} : for all i, if A_{i} is infinite, then $A_{i}=A_{i+1}$
3. p_{3} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. p_{4} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

3.1 Answer

Referring to the list above:

1. The hypothesis $(*)$ is sufficient to conclude that p_{1} holds. By its definition: $A_{k}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$ so it contains all the numbers $i \leq k$.
2. The hypothesis $(*)$ is sufficient to conclude that p_{2} does not hold. By its definition: $\left|A_{i}\right|<\left|A_{i+1}\right|$ and the element that makes the difference is exactly the $\operatorname{succ}(i)$.
3. The hypothesis $(*)$ is sufficient to conclude that p_{3} holds. By its definition $A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ if we consider $i=\infty$ then $A_{i}=\mathbb{N}$.
4. The hypothesis $(*)$ is sufficient to conclude that p_{4} does not hold. If we take $i=k$ then $\forall k \in \mathbb{N} . A_{i}=A_{k}$ this set is finite and contains k elements, but the $\bigcup_{i=0}^{\infty} A_{i}$ is infinite by def.

5 . The hypothesis $(*)$ is sufficient to conclude that p_{5} holds. Same explanation as in 4.
6. The hypothesis $(*)$ is sufficient to conclude that p_{6} does not hold. Same explanation ad in 4.

