Problem 1. Let A, B be two sets, P.T (i) $A = \emptyset \lor B = \emptyset$ (ii) $A \times B = \emptyset$ are equivalent

Proof. By definition $A \times B = \{(a, b) | a \in A, b \in B\}$

In order to prove (i) and (ii) are equivalent, we need to prove (i) \Rightarrow (ii) and (ii) \Leftarrow (i).

(\Leftarrow) part: Suppose if $A = \emptyset$ or $B = \emptyset$, then by definition $A \times B = \emptyset$

 (\Rightarrow) part: Suppose if $A \times B = \emptyset$, and if by contradiction $A \neq \emptyset$ and $B \neq \emptyset$, then there exists (a, b) such that $a \in A$ and $b \in B$, hence $(a, b) \in A \times B$, and hence is a contradiction \Box

Solution:

1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$

By definition for any two sets $S_1, S_2, S_1 = S_2$, if (a) $S_1 \subseteq S_2$ and (b) $S_2 \subseteq S_2$. (a) In our case by definition, of $\bigcup_{i=0}^k A_i$, $\forall k \in \mathbb{N}. A_k \subseteq \bigcup_{i=0}^k A_i$ is trivially true.

(b) By contradiction, if $\exists k \in \mathbb{N}$. $\bigcup_{i=0}^{k} A_i \not\subseteq A_k$, then there exists $0 \leq j \leq k$ with $A_j \not\subseteq A_k$. But this is a contradiction to our hypothesis, and hence $\forall k \in \mathbb{N}$. $\bigcup_{i=0}^{k} A_i \subseteq A_k$. This implies that hypothesis is sufficient to deduce $p_1 \square$

2. p_2 : forall *i*, if A_i is infinite, then $A_i = A_{i+1}$.

Take the specific case when $A_0 = \mathbb{N} - 0$, and $A_i = \mathbb{N}$, for i > 0. Now for i = 0, although the hypothesis holds, and the premise of p_2 , but not the conclusion of p_2 . Hence p_2 does not hold.

Take another specific case when $A_i = \mathbb{N}$, for $i \ge 0$. Now, p_2 holds in this case.

Hence, the hypothesis is not sufficient to conclude anything about the truth of p_2

3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$.

Take the specific case when $A_i = \{j | j \in \mathbb{N}\} \land 0 < j \leq i\}$, for all $i \in \mathbb{N}$, i.e. $A_0 = \emptyset, A_1 = \{1\}, A_2 = \{1, 2\}, \dots$ Now one can see that $0 \notin \bigcup_{i=0}^{\infty} A_i$, and p_3 does not hold.

Take another specific case when $A_i = \{j | 0 \leq j \leq i\}, \forall i \in \mathbb{N}$, i.e. $A_0 = \{0\}, A_1 = \{0, 1\}, A_2 = \{0, 1, 2\}, \dots$ It is easy to see that $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$, and p_3 holds

Hence, the hypothesis is not sufficient to conclude anything about the truth of $p_{\rm 3}$

4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite.

Take the specific case when $A_i = \{j | 0 \le j \le i\}, \forall i \in \mathbb{N}$, i.e. $A_0 = \{0\}, A_1 = \{0,1\}, A_2 = \{0,1,2\}, \dots$ It is easy to see that $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$ and hence is infinite, where as, for any $i \in \mathbb{N}, |A_i| = i + 1$, and is finite.

for a specific case where p_4 holds, see (5).

Hence, the hypothesis is not sufficient to conclude anything about the truth of p_4

5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite. Take the specific case when $A_i = \{0\}, \forall i \in \mathbb{N}$, i.e. $A_0 = \{0\}, A_1 = \{0\}, A_2 = \{0\}, \dots$ It is easy to see that $\bigcup_{i=0}^{\infty} A_i = \{0\}$ and hence is finite. Hence, the hypothesis is not sufficient to conclude anything about the truth

of p_5

6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite. For any $j \in \mathbb{N}$, since A_j is infinite, and since $A_j \subseteq \bigcup_{i=0}^{\infty} A_i$. Hence, $\bigcup_{i=0}^{\infty} A_i$ is infinite. Hence, the hypothesis is sufficient to conclude the truth of p_6