Problem 1. Let A, B be two sets, P.T (i) $A=\emptyset \vee B=\emptyset$ (ii) $A \times B=\emptyset$ are equivalent

Proof. By definition $A \times B=\{(a, b) \mid a \in A, b \in B\}$
In order to prove (i) and (ii) are equivalent, we need to prove (i) \Rightarrow (ii) and (ii) \Leftarrow (i).
(\Leftarrow) part: Suppose if $A=\emptyset$ or $B=\emptyset$, then by definition $A \times B=\emptyset$
(\Rightarrow) part: Suppose if $A \times B=\emptyset$, and if by contradiction $A \neq \emptyset$ and $B \neq \emptyset$, then there exists (a, b) such that $a \in A$ and $b \in B$, hence $(a, b) \in A \times B$, and hence is a contradiction

Solution:

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$

By definition for any two sets $S_{1}, S_{2}, S_{1}=S_{2}$, if (a) $S_{1} \subseteq S_{2}$ and (b) $S_{2} \subseteq S_{2}$.
(a) In our case by definition, of $\bigcup_{i=0}^{k} A_{i}, \forall k \in \mathbb{N} . A_{k} \subseteq \bigcup_{i=0}^{k} A_{i}$ is trivially true.
(b) By contradiction, if $\exists k \in \mathbb{N}$. $\bigcup_{i=0}^{k} A_{i} \nsubseteq A_{k}$, then there exists $0 \leq j \leq k$ with $A_{j} \nsubseteq A_{k}$. But this is a contradiction to our hypothesis, and hence $\forall k \in \mathbb{N} . \bigcup_{i=0}^{k} A_{i} \subseteq A_{k}$. This implies that hypothesis is sufficient to deduce p_{1}
2. p_{2} : forall i, if A_{i} is infinite, then $A_{i}=A_{i+1}$.

Take the specific case when $A_{0}=\mathbb{N}-0$, and $A_{i}=\mathbb{N}$, for $i>0$. Now for $i=0$, although the hypothesis holds, and the premise of p_{2}, but not the conlusion of p_{2}. Hence p_{2} does not hold.
Take another specific case when $A_{i}=\mathbb{N}$, for $i \geq 0$. Now, p_{2} holds in this case.
Hence, the hypothesis is not sufficient to conclude anything about the truth of p_{2}
3. p_{3} : if $\forall i \in \mathbb{N} . A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$.

Take the specific case when $\left.A_{i}=\{j \mid j \in \mathbb{N}) \wedge 0<j \leq i\right\}$, for all $i \in \mathbb{N}$, i.e. $A_{0}=\emptyset, A_{1}=\{1\}, A_{2}=\{1,2\}, \ldots$. Now one can see that $0 \notin \bigcup_{i=0}^{\infty} A_{i}$, and p_{3} does not hold.
Take another specific case when $A_{i}=\{j \mid 0 \leq j \leq i\}, \forall i \in \mathbb{N}$, i.e. $A_{0}=$ $\{0\}, A_{1}=\{0,1\}, A_{2}=\{0,1,2\}, \ldots$. It is easy to see that $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$, and p_{3} holds
Hence, the hypothesis is not sufficient to conclude anything about the truth of p_{3}
4. p_{4} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite.

Take the specific case when $A_{i}=\{j \mid 0 \leq j \leq i\}, \forall i \in \mathbb{N}$, i.e. $A_{0}=\{0\}, A_{1}=$ $\{0,1\}, A_{2}=\{0,1,2\}, \ldots$. It is easy to see that $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$ and hence is infinite, where as, for any $i \in \mathbb{N},\left|A_{i}\right|=i+1$, and is finite.
for a specific case where p_{4} holds, see (5).
Hence, the hypothesis is not sufficient to conclude anything about the truth of p_{4}
5. p_{5} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite. Take the specific case when $A_{i}=\{0\}, \forall i \in \mathbb{N}$, i.e. $A_{0}=\{0\}, A_{1}=\{0\}, A_{2}=\{0\}, \ldots$. It is easy to see that $\bigcup_{i=0}^{\infty} A_{i}=\{0\}$ and hence is finite.
Hence, the hypothesis is not sufficient to conclude anything about the truth of p_{5}
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite. For any $j \in \mathbb{N}$, since A_{j} is infinite, and since $A_{j} \subseteq \bigcup_{i=0}^{\infty} A_{i}$. Hence, $\bigcup_{i=0}^{\infty} A_{i}$ is infinite. Hence, the hypothesis is sufficient to conclude the truth of p_{6}

