Computability Assignment Year 2012/13 - Number 2

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $\bullet \ \ A=\emptyset \vee B=\emptyset$
- $A \times B = \emptyset$

1.1 Answer

Equivalence can be rewritten as $A = \emptyset \lor B = \emptyset \iff A \times B = \emptyset$. Lets us prove it:

$$\Longrightarrow) \ A=\emptyset \lor B=\emptyset \Longrightarrow A\times B=\emptyset:$$
 Assuming that $A=\emptyset,\ \nexists x\in A. \forall y\in B. < x,y>\in A\times B\to A\times B=\emptyset$
$$\Leftarrow) \ A\times B=\emptyset \Rightarrow A=\emptyset \lor B=\emptyset:$$

$$A\times B=\emptyset \Rightarrow (\nexists x\in A. \forall y\in B. < x,y>\in A\times B) \lor (\nexists y\in B. \forall x\in A. < x,y>\in A\times B) \Rightarrow A=\emptyset \lor B=\emptyset$$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty}A_i=\bigcup\{A_i\mid i\in\mathbb{N}\}$ and $\bigcup_{i=0}^kA_i=\bigcup\{A_i\mid i\in\mathbb{N}\ \land\ i\leq k\}=A_0\cup A_1\cup\cdots\cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

• the hypothesis (*) is sufficient to conclude that p_i holds; or

- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

Supposing $H = A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N}$

- p1) p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcup_{i=0}^k A_i$. Since, for the hypothesis, each $A_i \subseteq A_{i+1} \wedge A_i \cup A_{i+1} = A_{i+1} \Rightarrow (\bigcup_{i=0}^{k-1} A_i) \cup A_k = A_k$. The property holds under H.
- p2) p_2 : for all i, if A_i is infinite, then $A_i = A_{i+1}$. Under $H: A_i \subseteq A_{i+1} \Rightarrow |A_i| \leq |A_{i+1}|$ hence if A_i is infinite, A_{i+1} is infinite too. The property holds.
- p3) p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$. Taking into account H, we can assume that $A_i \neq A_{i+1} \iff A_i \supseteq A_{i+1} \land A_i \subseteq A_{i+1}$. By absurd, we make the hypothesis that: $A_i \neq A_{i+1} \Rightarrow A_i \supseteq A_{i+1} \land A_i \not\subseteq A_{i+1} \Rightarrow A_i \not\subseteq A_{i+1}$ which is false under H, then due to the contraddiction the property does not hold in H.
- p4) p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite: Taking into account H, we can infer that since A_i is finite and $A_{i-1} \subseteq A_i$, then A_{i-1} is finite too. Considering $A_i \cup A_{i+1} = A_{i+1}$ (from H): $\forall i \in \mathbb{N}$. $|\bigcup_{i=0}^k A_i| = |A_k| \Rightarrow |\bigcup_{i=0}^k A_i| = |A_{\infty}| = |\mathbb{N}|$ which is infinite. This property does not hold under H.
- p5) p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite: $\forall i \in \mathbb{N}$. A_i is finite and $A_{i-1} \subseteq A_i \Rightarrow A_{i-1}$ is finite. From $|A_{i-1} \cup A_i| \leq |A_i|$ we can state that $|\bigcup_{i=0}^{\infty} A_i| \leq |A_{\infty}| = |\mathbb{N}|$ which is infinite. The property holds in H.
- p6) p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite: stated that, from H: $A_{i-1} \subseteq A_i \Rightarrow |A_{i-1} \cup A_i| \leq |A_i|$ we can conclude that $|\bigcup_{i=0}^{\infty} A_i| = |A_{\infty}|$ where $|A_{\infty}|$ is infinite. The property holds.