# Computability Assignment Year 2012/13 - Number 2 

## 1 Question

Let $A, B$ be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset$
- $A \times B=\emptyset$


### 1.1 Answer

Equivalence can be rewritten as $A=\emptyset \vee B=\emptyset \Longleftrightarrow A \times B=\emptyset$. Lets us prove it:
$\Longrightarrow) A=\emptyset \vee B=\emptyset \Longrightarrow A \times B=\emptyset:$
Assuming that $A=\emptyset, \nexists x \in A . \forall y \in B .<x, y>\in A \times B \rightarrow A \times B=\emptyset$
$\Leftrightarrow) A \times B=\emptyset \Rightarrow A=\emptyset \vee B=\emptyset:$
$A \times B=\emptyset \Rightarrow(\nexists x \in A . \forall y \in B .<x, y>\in A \times B) \vee(\nexists y \in B . \forall x \in A .<$ $x, y>\in A \times B) \Rightarrow A=\emptyset \vee B=\emptyset$

## 2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

## 3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property $p_{i}$ shown below, state whether

- the hypothesis $(*)$ is sufficient to conclude that $p_{i}$ holds; or
- the hypothesis $(*)$ is sufficient to conclude that $p_{i}$ does not hold; or
- the hypothesis $(*)$ is not sufficient to conclude anything about the truth of $p_{i}$.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N}$. $A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. $p_{2}$ : for all $i$, if $A_{i}$ is infinite, then $A_{i}=A_{i+1}$
3. $p_{3}$ : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. $p_{4}$ : if $\forall i \in \mathbb{N}$. $A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. $p_{5}$ : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. $p_{6}$ : if $\forall i \in \mathbb{N}$. $A_{i}$ is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

### 3.1 Answer

Supposing $\mathrm{H}=A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}$

- p1) $p_{1}: \forall k \in \mathbb{N}$. $A_{k}=\bigcup_{i=0}^{k} A_{i}$. Since, for the hypothesis, each $A_{i} \subseteq$ $A_{i+1} \wedge A_{i} \cup A_{i+1}=A_{i+1} \Rightarrow\left(\bigcup_{i=0}^{k-1} A_{i}\right) \cup A_{k}=A_{k}$. The property holds under H .
- p 2$) p_{2}$ : for all $i$, if $A_{i}$ is infinite, then $A_{i}=A_{i+1}$. Under H: $A_{i} \subseteq A_{i+1} \Rightarrow$ $\left|A_{i}\right| \leq\left|A_{i+1}\right|$ hence if $A_{i}$ is infinite, $A_{i+1}$ is infinite too. The property holds.
- p3) $p_{3}$ : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$. Taking into account H, we can assume that $A_{i} \neq A_{i+1} \Longleftrightarrow A_{i} \supseteq A_{i+1} \wedge A_{i} \subseteq A_{i+1}$. By absurd, we make the hypothesis that: $A_{i} \neq A_{i+1} \Rightarrow A_{i} \supsetneq A_{i+1} \wedge A_{i} \nsubseteq A_{i+1} \Rightarrow A_{i} \nsubseteq$ $A_{i+1}$ which is false under H , then due to the contraddiction the property does not hold in H .
- p4) $p_{4}$ : if $\forall i \in \mathbb{N}$. $A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite: Taking into account H, we can infer that since $A_{i}$ is finite and $A_{i-1} \subseteq A_{i}$, then $A_{i-1}$ is finite too. Considering $A_{i} \cup A_{i+1}=A_{i+1}$ (from H): $\forall i \in \mathbb{N}$. $\left|\bigcup_{i=0}^{k} A_{i}\right|=\left|A_{k}\right| \Rightarrow$ $\left|\bigcup_{i=0}^{k} A_{i}\right|=\left|A_{\infty}\right|=|\mathbb{N}|$ which is infinite. This property does not hold under H .
- p5) $p_{5}$ : if $\forall i \in \mathbb{N}$. $A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite: $\forall i \in \mathbb{N}$. $A_{i}$ is finite and $A_{i-1} \subseteq A_{i} \Rightarrow A_{i-1}$ is finite. From $\left|A_{i-1} \cup A_{i}\right| \leq\left|A_{i}\right|$ we can state that $\left|\bigcup_{i=0}^{\infty} A_{i}\right| \leq\left|A_{\infty}\right|=|\mathbb{N}|$ which is infinite. The property holds in $H$.
- p6) $p_{6}$ : if $\forall i \in \mathbb{N}$. $A_{i}$ is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite: stated that, from H $: A_{i-1} \subseteq A_{i} \Rightarrow\left|A_{i-1} \cup A_{i}\right| \leq\left|A_{i}\right|$ we can conclude that $\left|\bigcup_{i=0}^{\infty} A_{i}\right|=\left|A_{\infty}\right|$ where $\left|A_{\infty}\right|$ is infinite. The property holds.

