Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A=\emptyset \vee B=\emptyset$
- $A \times B=\emptyset$

Answer
$A=\emptyset \Longleftrightarrow \neg \exists x . x \in A \Longleftrightarrow \forall x . x \notin A$
$B=\emptyset \Longleftrightarrow \neg \exists y . y \in B \Longleftrightarrow \forall y . y \notin B$
$A \times B=\emptyset \Longleftrightarrow\{(x, y) \mid x \in A, y \in B\}=\emptyset \Longleftrightarrow$
$\neg \exists(x, y) \cdot x \in A \wedge y \in B \Longleftrightarrow$
$\forall(x, y) \cdot x \notin A \vee y \notin B \Longleftrightarrow$
$\forall x \forall y . x \notin A \vee y \notin B \Longleftrightarrow$
$\forall x . x \notin A \vee \forall y . y \notin B \Longleftrightarrow$
$A=\emptyset \vee B=\emptyset$

2 Preliminaries

Given an infinite sequence of sets $\left(A_{i}\right)_{i \in \mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N}\right\}$ and $\bigcup_{i=0}^{k} A_{i}=\bigcup\left\{A_{i} \mid i \in \mathbb{N} \wedge i \leq k\right\}=A_{0} \cup A_{1} \cup \cdots \cup A_{k}$.

3 Question

Assume $\left(A_{i}\right)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$
A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}(*)
$$

For each property p_{i} shown below, state whether

- X: the hypothesis $(*)$ is sufficient to conclude that p_{i} holds; or
- Y: the hypothesis $(*)$ is sufficient to conclude that p_{i} does not hold; or
- Z: the hypothesis $(*)$ is not sufficient to conclude anything about the truth of p_{i}.

Justify your answers (briefly).

1. $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$
2. p_{2} : for all i, if A_{i} is infinite, then $A_{i}=A_{i+1}$
3. p_{3} : if $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_{i}=\mathbb{N}$
4. p_{4} : if $\forall i \in \mathbb{N}$. A_{i} is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is finite
5. p_{5} : if $\forall i \in \mathbb{N} . A_{i}$ is finite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite
6. p_{6} : if $\forall i \in \mathbb{N}$. A_{i} is infinite, then $\bigcup_{i=0}^{\infty} A_{i}$ is infinite

3.1 Answer

1. X: $A_{k}=\bigcup_{i=0}^{k} A_{i} \Longleftrightarrow A_{k} \subseteq \bigcup_{i=0}^{k} A_{i}$ (trivial) and $\bigcup_{i=0}^{k} A_{i} \subseteq A_{k}$. Hypothesis $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \cdots \subseteq \mathbb{N}$ is sufficient to conclude that $\bigcup_{i=0}^{k} A_{i} \subseteq A_{k}$ and respectively that $p_{1}: \forall k \in \mathbb{N} . A_{k}=\bigcup_{i=0}^{k} A_{i}$ holds.
2. todo
3. Z: We can't conclude X and we can't conclude Y , therefore Z .
(a) X: counterexample: $A_{k}=\{2 * i \mid i \leq k\}$ shows that $\left(^{*}\right)$ holds and $\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1}$, but p_{3} does not hold, that is $\left(^{*}\right)$ is not sufficient to conclude that p_{3} holds.
(b) Y: p_{3} does not hold $\Longleftrightarrow \neg p_{3}$ holds. $\left(^{*}\right)$ is sufficient to conclude that $\neg p_{3}$ holds. $\neg p_{3}=\forall i \in \mathbb{N}$. $A_{i} \neq A_{i+1} \wedge \bigcup_{i=0}^{\infty} A_{i} \neq \mathbb{N}$. Counterexample: $A_{k}=\{i \mid i \leq k\}$ shows that $\left(^{*}\right)$ holds and $\neg p_{3}$ does not hold, therefore p_{3} holds.
4. Z: We can't conclude X and we can't conclude Y , therefore Z .
(a) X: counterexample: $A_{k}=\{i \mid i \leq k\}$ shows that (*) holds and $\forall i \in$ \mathbb{N}. $\left|A_{i}\right|<\infty$; but $\left|\bigcup_{i=0}^{\infty} A_{i}\right|=\infty$. p_{4} does not hold, that is $\left(^{*}\right)$ is not sufficient to conclude that p_{4} holds.
(b) Y: counterexample: $A_{k}=\{0\}$ shows that $\left(^{*}\right)$ holds and $\forall i \in \mathbb{N}$. \mid $A_{i} \mid<\infty$; but $\left|\bigcup_{i=0}^{\infty} A_{i}\right| \neq \infty$. p_{4} holds, that is $\left(^{*}\right)$ is not sufficient to conclude that p_{4} does not hold.
5. Z: We can't conclude X and we can't conclude Y, therefore Z.
(a) see (4.b).
(b) see (4.a).
6. Holds regardless of (*).
