Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset$
- $A \times B = \emptyset$

Answer

 $\begin{array}{l} A = \emptyset \Longleftrightarrow \neg \exists x.x \in A \Longleftrightarrow \forall x.x \notin A \\ B = \emptyset \Leftrightarrow \neg \exists y.y \in B \Longleftrightarrow \forall y.y \notin B \\ A \times B = \emptyset \Longleftrightarrow \{(x,y) \mid x \in A, y \in B\} = \emptyset \Leftrightarrow \\ \neg \exists (x,y) .x \in A \land y \in B \Leftrightarrow \\ \forall (x,y) .x \notin A \lor y \notin B \Leftrightarrow \\ \forall x \forall y.x \notin A \lor y \notin B \Leftrightarrow \\ \forall x.x \notin A \lor \forall y.y \notin B \Leftrightarrow \\ A = \emptyset \lor B = \emptyset \end{array}$

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i \mid i \in \mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- X: the hypothesis (*) is sufficient to conclude that p_i holds; or
- Y: the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- Z: the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all *i*, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

- 1. X: $A_k = \bigcup_{i=0}^k A_i \iff A_k \subseteq \bigcup_{i=0}^k A_i$ (trivial) and $\bigcup_{i=0}^k A_i \subseteq A_k$. Hypothesis $A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N}$ is sufficient to conclude that $\bigcup_{i=0}^k A_i \subseteq A_k$ and respectively that p_1 : $\forall k \in \mathbb{N}$. $A_k = \bigcup_{i=0}^k A_i$ holds.
- 2. todo
- 3. Z: We can't conclude X and we can't conclude Y, therefore Z.
 - (a) X: counterexample: $A_k = \{2 * i | i \leq k\}$ shows that (*) holds and $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, but p_3 does not hold, that is (*) is not sufficient to conclude that p_3 holds.
 - (b) Y: p_3 does not hold $\iff \neg p_3$ holds. (*) is sufficient to conclude that $\neg p_3$ holds. $\neg p_3 = \forall i \in \mathbb{N}$. $A_i \neq A_{i+1} \land \bigcup_{i=0}^{\infty} A_i \neq \mathbb{N}$. Counterexample: $A_k = \{i | i \leq k\}$ shows that (*) holds and $\neg p_3$ does not hold, therefore p_3 holds.
- 4. Z: We can't conclude X and we can't conclude Y, therefore Z.
 - (a) X: counterexample: $A_k = \{i | i \leq k\}$ shows that (*) holds and $\forall i \in \mathbb{N}$. $|A_i| < \infty$; but $|\bigcup_{i=0}^{\infty} A_i| = \infty$. p_4 does not hold, that is (*) is not sufficient to conclude that p_4 holds.
 - (b) Y: counterexample: $A_k = \{0\}$ shows that (*) holds and $\forall i \in \mathbb{N}$. $|A_i| < \infty$; but $|\bigcup_{i=0}^{\infty} A_i| \neq \infty$. p_4 holds, that is (*) is not sufficient to conclude that p_4 does not hold.
- 5. Z: We can't conclude X and we can't conclude Y, therefore Z.

- (a) see (4.b).
- (b) see (4.a).
- 6. Holds regardless of (*).