Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $\bullet \ A = \emptyset \vee B = \emptyset$
- $A \times B = \emptyset$

1.1 Answer

for $A = \emptyset \lor B = \emptyset$ Sure $A = B = \emptyset$. (RZ: no) and $A = B = \emptyset \iff A = \emptyset \lor B = \emptyset$

for $A \times B = \emptyset \iff A = B = \emptyset$ (?) So the two properties are equivalent

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i \mid i \in \mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i \in \mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

- the hypothesis (*) is sufficient to conclude that p_i holds; or
- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all *i*, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

- 1. True
 - $\bigcup_{i=0}^{k} A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \dots \cup A_k$ and $A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N}$ (*) $A_0 \cup A_1 \cup \dots \cup A_k = A_k$ so $\forall k \in \mathbb{N}$. $A_k = \bigcup_{i=0}^{k} A_i$

2.Not sufficient to conclude anything about the truth Assume $A_i = A_{i+1} = \mathbb{N}$, then it is right

however, if A_0 is a set of all odds, $A_1 = A_0 \cup \{2\}$, then it is false

3.Not sufficient to conclude anything about the truth Assume A_0 is a set of all odds, $A_1 = A_0 \cup \{0\}, A_2 = A_0 \cup \{0, 2\}, A_3 = A_0 \cup \{0, 2, 4\}, \dots, A_{\infty} = A_0 \cup \{2n\} = \mathbb{N}$. So, it is right.

however, if A_0 is a set of all odds expect 1,the other A_i is defined as previous, then $A_{\infty} = \mathbb{N} \setminus \{1\} \neq \mathbb{N}$

4.Not sufficient to conclude anything about the truth if $\forall i \in \mathbb{N}$. $A_i = \{1\}, \bigcup_{i=0}^{\infty} A_i = \{1\}$, is finite. In this case, it is true.

hoever, if $A_i = \{x | x \leq i, i \in \mathbb{N}\}, \bigcup_{i=0}^{\infty} A_i = \mathbb{N}$ is infinite, it is wrong!

5.Not sufficient to conclude anything about the truth proof: the same with 4.

6.True for $A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N}$ (*) $A_0 \subseteq \bigcup_{i=0}^{\infty} A_i$ A_0 is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite.