Computability Assignment Year 2012/13 - Number 2

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Let A, B be two sets. Prove that the properties below are equivalent.

- $A = \emptyset \lor B = \emptyset \ (p)$
- $A \times B = \emptyset$ (q)

1.1 Answer

- 1. $(p \to q)$ By contradiction, if $A \times B \neq \emptyset$, then $\exists (a, b) \in A \times B$, that is, $a \in A \land b \in B$, which is false.
- 2. $(p \leftarrow q)$ Also by contradiction. i.e. $A \neq \emptyset \land B \neq \emptyset$, then $\exists a \in A \land \exists b \in B$, which makes $(a, b) \in A \times B$, again false.

2 Preliminaries

Given an infinite sequence of sets $(A_i)_{i\in\mathbb{N}}$, we define $\bigcup_{i=0}^{\infty} A_i = \bigcup \{A_i \mid i \in \mathbb{N}\}$ and $\bigcup_{i=0}^k A_i = \bigcup \{A_i \mid i \in \mathbb{N} \land i \leq k\} = A_0 \cup A_1 \cup \cdots \cup A_k$.

3 Question

Assume $(A_i)_{i\in\mathbb{N}}$ to be an infinite sequence of sets of natural numbers, satisfying

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq A_3 \cdots \subseteq \mathbb{N} \ (*)$$

For each property p_i shown below, state whether

• the hypothesis (*) is sufficient to conclude that p_i holds; or

- the hypothesis (*) is sufficient to conclude that p_i does not hold; or
- the hypothesis (*) is not sufficient to conclude anything about the truth of p_i .

Justify your answers (briefly).

- 1. $p_1: \forall k \in \mathbb{N}. A_k = \bigcup_{i=0}^k A_i$
- 2. p_2 : for all *i*, if A_i is infinite, then $A_i = A_{i+1}$
- 3. p_3 : if $\forall i \in \mathbb{N}$. $A_i \neq A_{i+1}$, then $\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$
- 4. p_4 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is finite
- 5. p_5 : if $\forall i \in \mathbb{N}$. A_i is finite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite
- 6. p_6 : if $\forall i \in \mathbb{N}$. A_i is infinite, then $\bigcup_{i=0}^{\infty} A_i$ is infinite

3.1 Answer

- 1. True. By induction. (base) $\bigcup_{i=1}^{1} A_i = A_1$, (inductive) $A_{n-1} \subseteq A_n \rightarrow \bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n-1} A_i \cup A_n = A_{n-1} \cup A_n = A_n$
- 2. Indecisive. We may have $A_1 = \{1\} = A_2 = \cdots = A_n \subsetneq A_{n+1} = \{1, 2\} \subseteq \cdots \subseteq \mathbb{N}$
- 3. Indecisive. Choose $A_i = \{2k | 0 < k \leq i, k \in \mathbb{N}\}$, we will get the set of all even numbers.
- 4. True. According to 1. (RZ: no)
- 5. False. (RZ: might also be true)
- 6. True.