Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

$p(x, y)= \begin{cases}1 & x+3=y \\ 0 & \text { otherwise }\end{cases}$
Given x , a value y that satisfies p exists. So statement 1 is true.
Now we try to demostrate that an y that satisfies the property p for all the value of x. We call this value z. But not all the x have the same value of z, because if $\mathrm{z}=\mathrm{x}$, then $\mathrm{p}(\mathrm{z}+2, \mathrm{z})$ is false. So claim 2 is true.

