Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Define $p(x, y)$ as follow $p(x, y)=(x=y)$ in this case both 1. and 2. are satisfied.

1.1.1 $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$

RZ: ok, but you don't really need induction to prove $x=x$
The property is satisfied for $x=0$ because exists an y that makes it true $y=0$ in fact $p(0,0)=(0=0)$ that it's true.

Now we assume that the theorem it's true for the generic x so we see that $y=x$ makes the preposition true.

The last step show us that for $x+1$ the the preposition is true in fact is satisfied by $y=x+1$:
if $y=x+1$
$p(y, x+1)=(y=x+1)$ we sobstitute y by the rules above
$p(x+1, x+1)=(x+1=x+1)$ so is satisfied.
Inductively we have proof the first claim.

1.1.2 $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

If we choose $y=0$ and $x=0$ the property is verified but not for $y=0$ and $x=1$ so it isn't verified for all the x.

We can now take the generic y, the property is satisfied for x by the rules $x=y$ but not for $x+1$ by the same rules in fact if $x=y, x+1 \neq y$. For $y+1$ the rules is the same as above in fact if $y=x: y+1=x+1$ but $y+1 \neq x+2$ so $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$ is satisfied.

