# Computability Assignment Year 2012/13 - Number 1 

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

## 1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for $p$, and a proof for the above claims.

### 1.1 Answer

Let's take $p(x, y)$ such that $y=f(x)=2 x+1$.
The first condition is respected by the fact that whichever $x$ is chosen there will be always a $y$ due to the fact that $f$ is a total function.

The second condition can be proved by contradiction: Suppose that such $y$ exists than must satisfy the property $p$ for every $x$.

Let's pick $y=1$ in order to satisfy the property $x=0$ but to verify the for all try an other $x=1$ then the property does not hold anymore.

But now is clear that if such ant $y$ exists than the function $f$ must not be injective, so to have all the $x$ mapped to the same $y$ while the chosen property at the beginning is clearly injective and makes impossible to have such $y$.

