Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Write your answer here.
$p(x, y)= \begin{cases}\text { true } & y=2 x \\ \text { false } & \text { otherwise }\end{cases}$

1. is true because $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . y=2 x$
2. is true because $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . y=2 x$:
suppose $y=2 \cdot(x)$ and $y=2 \cdot(x+1) \Rightarrow 2 \cdot(x)=2 \cdot(x+1) \Rightarrow x=x+1 \Rightarrow$ $0=1 \Rightarrow$ ABSURD.
