Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

$\mathrm{p}(\mathrm{x}, \mathrm{y})=\mathrm{x}>\mathrm{y}$
Proof 1
Suppose $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . y>x \Longleftrightarrow \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . y>x$
then exists a set $\mathrm{Y}=\{\mathrm{y} \mid$ take any x over $\mathbb{N} \Longrightarrow \mathrm{y}>\mathrm{x}\}$ such that $\mathbb{N} \cup \mathrm{Y}=\mathbb{N}$
and $\mathbb{N} \cap \mathrm{Y}=\oslash$
RZ: what? I can't understand what Y should be
$\Longrightarrow Y=\varnothing$
Proof 2
Suppose $\exists y \in \mathbb{N} . \forall x \in \mathbb{N} . x>y$
Let $\mathrm{x} \in \mathbb{N}$ and let $\mathrm{y}=\mathrm{x}$. RZ: you can not pick y here
In this case the property $\mathrm{x}>\mathrm{y}$ is false

