Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Definition $: P(x, y)=\{(x, y) \mid x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge y \geq x\}$

Proof:

For 1: $\forall x \in \mathbb{N}$,
let $y=x+1$
so $\exists y \in \mathbb{N}, y \geq x$
For 2: $\forall y \in \mathbb{N}$,
let $x=y+1$
so $\exists x \in \mathbb{N}, y \leq x$.

That is to say, $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . P(x, y)$,
for the reason $(\neg \exists x \cdot p(x) \Leftrightarrow \forall x \cdot \neg p(x))$.

