Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

There are some possible way to define $p(x, y)$.

$$
p(x, y)= \begin{cases}\text { true } & \text { if } x=y \\ \text { false } & \text { otherwise }\end{cases}
$$

In this case I have defined that the function returns true iff the two numbers are equal.
Proof:

1. The first statement says that for all x, exists a y such that the property is true. So, given the x value, always exists an element that is equal to it in \mathbb{N}, for instance x.
2. The second statement says that does not exist a y such that for all x the property is true. This is true because we cannot find an element in \mathbb{N} such that it is equal to every other elements in \mathbb{N}. In particular, if such y exists, it means that exists two (actually all but we can use only 2) different numbers that are equal to the same y, so take $x_{1}, x_{2} \in \mathbb{N}$ with $x_{1} \neq x_{2}, x_{1}=y, x_{2}=y$ but in this case it must be that $x_{1}=x_{2}$ that is a contradiction.
