# Computability Assignment Year 2012/13 - Number 1 

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

## 1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y) \Longleftrightarrow \neg \exists x \in \mathbb{N} . \forall y \in \mathbb{N} . \neg p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y) \Longleftrightarrow \forall y \in \mathbb{N} . \exists x \in \mathbb{N} . \neg p(x, y)$

Provide a definition for $p$, and a proof for the above claims.

### 1.1 First Trial:

Let $<x, y>\in p \Longleftrightarrow y=f(x)$, where $f$ is a recursive function so defined:
$f(x)=\left\{\begin{array}{ll}y=x / 2 & \text { if } \exists!n \in \mathbb{N} . x=2 * n \\ y=(x-1) / 2 & \text { if } \exists!n \in \mathbb{N} . x=2 * n+1\end{array}\right.$, where it is implicit that $y \in \mathbb{N}$ and that the symbols,,$+- /$ follow the usual arithmetic semantics among natural numbers.

Statement 1: (proof by enumeration of cases)
Let $x_{0} \in \mathbb{N}$ be an arbitrarily chosen number, there are two possible cases: $x_{0}$ may be either even or odd.

Case A: $x_{0}$ is even.
If $x_{0}$ is even, there exists by definition a (unique) $n \in \mathbb{N}$ such that $x_{0}=2 * n$.
Therefore by the actual definition of function $f$, we have that $y_{0}=f\left(x_{0}\right)=$ $x_{0} / 2$, and being more precise $y_{0}=f\left(x_{0}\right)=f(2 * n)=2 * n / 2=n$.

Since $y_{0}=n \in \mathbb{N}$, the tuple $<x_{0}, y_{0}>$ belongs to the binary relationship $p$. Case B: $x_{0}$ is odd.
If $x_{0}$ is odd, there exists by definition a (unique) $n \in \mathbb{N}$ such that $x_{0}=2 * n+1$.
Therefore by the actual definition of function $f$, we have that $y_{0}=f\left(x_{0}\right)=$ $\left(x_{0}-1\right) / 2$ which means $y_{0}=f\left(x_{0}\right)=f(2 * n+1)=((2 * n+1)-1) / 2=$ $(2 * n) / 2=n$.

Since $y_{0}=n \in \mathbb{N}$, the tuple $<x_{0}, y_{0}>$ belongs to the binary relationship $p$. Conclusion:
Having chosen $x_{0} \in \mathbb{N}$ arbitrarily and examinated all the possible cases, we may generalize and say that for each $x \in \mathbb{N}$ there exists $y \in \mathbb{N}$ such that $p(x, y)$, which is precisely what Statement 1 is standing for.

## Statement 2:

Let $y \in \mathbb{N}$ be, for absurdum, a chosen number such that $\forall x \in \mathbb{N} . p(x, y)$.
Since the property holds for all $x \in \mathbb{N}$, it certainly has to hold for a strict subset of $\mathbb{N}$, lets say $A_{m}=\{x \mid x=m \vee x=s(m) \vee x=s(s(m))\}(\mathrm{s}(\mathrm{x})$ is the usual successor function).

We may take an arbitrary set $A_{m}=\{m, m+1, m+2\}$, hence we make no restriction and use it directly without instanciating $m$.

For hypothesys $<m, y>\in p,<m+1, y>\in p$ and $<m+2, y>\in p$.
Our goal is to show that the following statement $y=f(m)=f(m+1)=$ $f(m+2)$ is false, thus falsifying the entire conjecture.

There are two cases:
if $m=2 * k$ then $\left\{\begin{array}{ll}f(m)=f(2 * k)=2 * k / 2 \\ f(m+1)=f(2 * k+1)=(2 * k+1-1) / 2 & =k \\ f(m+2)=f(2 * k+2)=(2 * k+2) / 2 & =k+1\end{array}\right.$,
which clearly contraddicts the hypothesys.

$$
\text { if } m=2 * k+\text { then } \begin{cases}f(m)=f(2 * k+1)=(2 * k+1-1) / 2 & =k \\ f(m+1)=f(2 * k+2)=(2 * k+2) / 2 & =k+1 \\ f(m+2)=f(2 * k+3)=(2 * k+3-1) / 2 & =k+1\end{cases}
$$

which clearly contraddicts the hyphotesys.
Therefore there exists no $y \in \mathbb{N}$ with such properties, therefore we can dischard the initial hyphotesis and conclude $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$.

### 1.2 Second Trial.

Let $<x, y>\in p \Longleftrightarrow y=s(x)$, so that $p$ may be read as the property relationship of " x is the predecessor of y " or, conversely, " y is the successor of x ". The function $s(x)$ is total and injective, while the property $p$ is anti-reflexive, anti-symmetric and clearly not transitive [proof by exercise].

1:
The first statement is straightforward, since $\mathbb{N}$ is a well-founded set that may be recursively defined as
$0 \in \mathbb{N}$ and $\forall x \in \mathbb{N} \Rightarrow s(x) \in \mathbb{N}$
then it is obvious that $\forall x \in \mathbb{N}$, its successor $s(x)$ belongs to the set of $\mathbb{N}$. 2 :
The second statement is obviously right, since otherwise it would violate both the injective property of $s(x)$ and the anti-reflexive and anti-symmetric properties of $p$.

Let's try to sort out a proof:
Let $y \in \mathbb{N}$ be, for absurdum, a chosen number such that $\forall x \in \mathbb{N} . p(x, y)$.

Since $y \in \mathbb{N}$, by the property of $\mathbb{N}$ there exist a (possibly large) finite index $n \in \mathbb{N}$ such that $y=s_{n}\left(s_{n-1}\left(\ldots s_{1}(0) \ldots\right)\right)$. Also, since $y \in \mathbb{N}$, there must exist $y^{\prime} \in \mathbb{N}$ such that $y^{\prime}=s(y)$, which means $<y, y^{\prime}>\in p$.

For hypothesys $y$ is such that $\forall x \in \mathbb{N}$. $p(x, y)$, therefore also $<y^{\prime}, y>\in p$ and $y=s\left(y^{\prime}\right)$.

Hence one could deduct $y=s\left(y^{\prime}\right)=s(s(y))$, which follows into:
$\left.\left.y=s_{n}\left(s_{n-1}\left(\ldots s_{1}(0) \ldots\right)\right)=s_{n+2}\left(s_{n+1}\left(\ldots s_{1}(0) \ldots\right)\right)\right)\right)=s(s(y))$
This is clearly possible only if $n=n+2$, but clearly $0 \neq 2$.
Since the only hypothesys made was the existence of ay $\in \mathbb{N}$ with such satisfying the second statement, and it was shown that the property didn't hold for an arbitrarily chosen $y$, we can discard the claim and deduce $\neg \exists y \in \mathbb{N} . \forall x \in$ $\mathbb{N} . p(x, y)$ is true.

