# Computability Assignment Year 2012/13 - Number 1 

September 21, 2012

## 1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for $p$, and a proof for the above claims.

### 1.1 Answer

Considering $p(x, y) \Longleftrightarrow x<y$ as the binary property, we can prove the two claims:
a) $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y) \Longleftrightarrow \forall x \in \mathbb{N} . \exists y \in \mathbb{N} . x<y$ which in $\mathbb{N}$ is satisfied for each $x$ assuming $y:=x+1$
b) $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y) \Longleftrightarrow \forall y \in \mathbb{N} . \exists x \in \mathbb{N} . \neg p(x, y) \Longleftrightarrow \forall y \in \mathbb{N} . \exists x \in$ $\mathbb{N} .(x \geqslant y)$ which in $\mathbb{N}$ is satisfied for each $x$ assuming $y:=x$

