Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file. More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property p(x, y) over natural numbers such that we have both

- 1. $\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : p(x, y)$
- 2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

Write your answer here. The property could be p(x, y) = y > x

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . y > x$

Proof:

Take any $x \in \mathbb{N}$ let y = x + 1, such $y \in \mathbb{N}$ and $y > x \Longrightarrow x + 1 > x$, which is true for all x.

1. $\neg \exists y \in \mathbb{N}. \forall x \in \mathbb{N}. y > x$

Proof:

(by contradiction)

Let's assume that $\exists y \in \mathbb{N} . \forall x \in \mathbb{N} . y > x$

this means that there exists at least one $y\in\mathbb{N}$ which is greater than all $x\in\mathbb{N}$

in other words, there is one natural number which is greater than all the other natural numbers,

since the natural numbers are infinite such y can not exist, therefore contradiction.