Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

$p(x, y)= \begin{cases}\text { true } & x=y \\ \text { false } & \text { otherwise }\end{cases}$
Proof:
Given x, a value y that satisfies p exists, and it is x, hence 1 is true
A single y that satisfies p for all the possible values of x does not exist. Assuming its value is c , this would mean that $\mathrm{x}=\mathrm{c}$. But then $\mathrm{p}(\mathrm{c}+1, \mathrm{c})$ would be false, hence statement 2 is true.

