Computability Assignment Year 2012/13 - Number 1

Please keep this file anonymous: do not write your name inside this file.
More information about assignments at http://disi.unitn.it/~zunino/teaching/computability/assignments

1 Question

Define a binary property $p(x, y)$ over natural numbers such that we have both

1. $\forall x \in \mathbb{N} . \exists y \in \mathbb{N} . p(x, y)$
2. $\neg \exists y \in \mathbb{N} . \forall x \in \mathbb{N} . p(x, y)$

Provide a definition for p, and a proof for the above claims.

1.1 Answer

$$
p(x, y)= \begin{cases}\text { true } & y=2 x \\ \text { false } & \text { o.w }\end{cases}
$$

1. Obvious, all even numbers are natural numbers. OK - RZ
2. Equivalent to $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . \neg p(x, y)$. OK - RZ

Apparently, for an odd number y we don't have a natural number x s.t. $y=2 x$.

I don't understand: the above proves $\forall y \in O d d . \neg \exists x . y=2 x$, which is not the same thing as $\forall y \in \mathbb{N} . \exists x \in \mathbb{N} . \neg p(x, y)$.

