
Defending the Bank with a Static Analysis ⋆

Roberto Zunino

Dipartimento di Informatica, Università di Pisa, Italy
zunino@di.unipi.it

Abstract. The Common Crypto Arichitecture (CCA) defines the be-
havior of a small cryptographic device used in every automated teller
machine (ATM). The CCA is meant to guarantee the confidentiality of
the keys used internally by the device, while allowing common ATM
operations to be performed. Some versions of the CCA were found to
be vulnerable. An amended version was manually proved secure in [8],
posing the question of whether fully automatic tools are up to the task.
Here, we report about the automatic verification of the same fact.
Keywords: Common Crypto Architecture, ATM, API, verification, static
analysis

1 Introduction

Automated teller machines (ATMs) are ubiquitous: their world-wide net-
work allows any card owner to withdraw cash from them, anywhere, any-
time. The volume of the transactions performed by ATMs every day is
huge. Obviously, security is the main design concern for such a network.

The Common Crypto Architecture (CCA) [4,5] is the standard for
the ATM architecture. The basic idea behind the CCA is to keep the
trusted hardware and software base as small as possible. From this point
of view, one should not trust the communication network between ATMs,
since intercepting messages on it is feasible. Rather, only encrypted data
should pass through this network. Also, an ATM is too large a system for
it to be trusted. For instance, ATM software includes a component for
the graphical user interface. ATMs also comprise a display, a printer, a
card reader, a cash dispenser, and so on. These ATM components should
have no access to the secret keys used for the actual transactions.

To this purpose, most of the ATM hardware and software is not
trusted. Most ATMs are rather standard personal computers, equipped
with a single small trusted device. An example of this device is the IBM
4758 coprocessor [5]. This device has a limited memory and process-
ing power, just enough to perform the crypto operations involved in the

⋆ Supported by the EU within the FETPI Global Computing, project IST-2005-16004
SENSORIA (Software Engineering for Service-Oriented Overlay Computers).

ATM transactions. Further, the device is tamper-proof, so that physically
breaking into it would trigger a self-destruct mechanism, making it un-
feasible to retrieve the information stored in it. Accordingly, unencrypted
secret keys are only stored inside the device. However, due the memory
limitations, most keys are actually stored outside the device, protected by
encryption. The encrypted keys are sent to the device on demand. The
device will then decrypt the passed keys with its own keys, and proceed
its computation.

The CCA specifies the Application Programming Interface (API), de-
tailing the operations performed by the device. The API is meant to allow
the common ATM transactions to be performed, while preserving the se-
curity of the ATM network. However, several attacks were found on the
API. Bond [3] showed how to attack the CCA API, so to disclose the
secret PIN of any card. Further attacks were discovered in [15]. After
that, the known attacks were also automatically found by the theorem
prover Otter [13]. Bond also provided a fixed version of the API, resilient
to all known attacks. While the insecurity of the flawed API had been
proved (even automatically), a correctness proof for the amended version
was still missing. Courant and Monin [8] filled this gap, by providing a
formal proof for it. The proof was written manually, and verified through
the Coq proof assistant [7]. Coq surely offered a solid ground for the task
at hand: indeed, having a machine-checkable proof makes one to be very
confident about its correctness. The actual files comprising the proof con-
tain about 2100 lines of hand-written definitions, lemmata, and theorems.
This task required a non-trivial effort, and Courant and Monin themselves
wondered if the same statement could be instead checked by a fully au-
tomated tool. They also note that, while the problem is similar to the
ones arising in cryptographic protocol verification, the CCA API is more
complex than the average protocol. While a protocol usually comprise a
few, sequential, simple steps, the API has several, unordered, non trivial
operations.

In this paper, we report on our success on validating the amended
version, in a fully automated way through static analysis. To this purpose,
we used the Rewrite tool [14].

Summary In Sect. 2 we define the operations underlying the CCA API.
Then, we discuss Bond’s attack in Sect. 2.2. The amended API is pre-
sented in Sect. 2.3. We consider the verification problem in Sect. 3. An
abstract high-level specification for the API is checked in Sect. 3.2 and
3.3. In Sect. 3.4 a low-level refinement is presented and validated.

2

2 Background: The Common Crypto Architecture API

The Common Crypto API uses a fairly large number of constants, includ-
ing keys and type tags.

– km is the master key, and is kept secret inside the device. Most other
secrets are instead stored outside, in the ATM, and encrypted under
km. More in detail, secrets are encrypted with both km and a type

tag t: the encryption enc(x, xor(t, km)) is meant to keep x secret and
certify that x is of type t. Note that a XOR operation is used to
combine the key km with the type tag t.

– imp, exp, data are type tags for importation keys, exportation keys, and
application data, respectively. pin is a type tag for the p key (shown
below).

– acc is the public account number for a card.
– p is a secret known by banks only. The secret PIN of any card can be

computed with p as enc(acc, p). So, it is very important for p to be
kept secret. The key p is stored in the ATM as enc(p, xor(pin, km)).

– kp is used to generate new tags. For any value x, t = xor(x, kp) is
a type tag; this means that the actual key used for encryption is
xor(x, kp, km). Roughly, this tag t represents incomplete data of type
x (as the parts of kek, shown below). The CCA API provides opera-
tions for performing some (limited) changes to incomplete data, i.e.
to change the data under an encryption with the kp tag. An operation
for completing the data and removing kp is also provided.

– kek is the “key encrypting key”. It is known by both the ATM and
the bank, and is used for confidential communication between them
(e.g. exchanging p). The key kek is tagged as an importation key, and
it is composed by three parts: kek = xor(k1, k2, k3). This is to allow
the transmission of kek using three distinct channels in a safe way: an
adversary needs to intercept all the parts to learn kek. In normal CCA
operations, the XOR between any two of these keys, e.g. xor(k1, k2),
is tagged as an incomplete importation key with kp and imp.

– exp1 is an exportation key, and is tagged as such.

We can now define the API operations. To this purpose, we use term
rewriting rules. We represent the operation as terms f1(−), . . . , f6(−).

f1(X,Y, enc(Z, xor(X, kp, km))) ⇒ enc(xor(Z, Y), xor(X, kp, km))
f2(X,Y, enc(Z, xor(X, kp, km))) ⇒ enc(xor(Z, Y), xor(X, km))

These operations work on incomplete data Z, marked by the tag xor(X, kp).
The first one, f1, basically changes Z to xor(Z, Y). Note that there is no

3

restriction on Y , so the API user can perform arbitrary XOR operations
on Z. The result is still marked as incomplete, as the kp tag still occurs
in it. The second operation f2, performs the same operation as f1 but also
removes the kp tag, thus forming a complete data. So, after a f2 has been
performed, it can not be applied again to its result.

The above operations are intended to be used to form the key kek

from its components k1, k2, k3. The XOR of them is performed by the
API under the encryption layer, so that the owner of only one part can
not learn anything about the others.

f3(T, enc(K, xor(imp, km)), enc(X, xor(T,K))) ⇒ enc(X, xor(T, km))

The above operation imports a datum X. Initially, K is tagged as an
importation key. Term X is instead tagged with T , but its encryption
uses K instead of the usual km. The f3 operation changes this encryp-
tion into the usual form, replacing K with km. So, this allows to use
enc(K, xor(imp, km)) as a certificate, roughly meaning “K can be changed
into km”.

f4(T, enc(K, xor(exp, km)), enc(X, xor(T, km))) ⇒ enc(X, xor(T,K))

The f4 operation is the dual of f3. It requires K be marked with the
exportation tag. Then, replaces km with K in a tagged data X. Here the
meaning of the certificate of K is “km can be changed into K”.

f5(X, enc(K, xor(data, km))) ⇒ enc(X,K)
f6(enc(X,K), enc(K, xor(data, km))) ⇒ X

Operations f5, f6 instead consider keys K marked with the data tag. These
kind of keys are for encrypting application data, so the device simply
provides a mean for encrypting and decrypting with K. Note that K is
still kept secret.

2.1 The CCA API Security Goals

The CCA API is supposed to keep several values secret. That is, no
sequence of API calls should enable an adversary to learn these values.
We summarize them here:

– km, the master key. Disclosing this would allow the adversary to read
encrypted data meant only to be accessible by the device.

– enc(acc, p) is the secret PIN of the card of account acc. Clearly, this
would enable the adversary to freely withdraw money from ATMs, so
it should be kept secret.

4

– p, the PIN-related key. Leaking p would enable the adversary to com-
pute the PIN above, for any known account acc.

– kek, the “key encrypting key”. The key p is encrypted with kek, so the
latter should be kept secret.

Actually, the secrecy of the above values is subsumed by the secrecy
of enc(acc, p). However, considering the impact of the leak of the other
secrets is insightful.

The adversary starts with an initial knowledge, comprising all the
public known constants, as well as all the values that are stored outside
the device.

– All the type tags: data, pin, imp, exp, kp.
– The encrypted p, that is enc(p, xor(pin, kek)).
– The encrypted exportation key exp1. As usual, it is tagged with exp:

enc(exp1, xor(exp, km)).
– One part of the three components of kek = xor(k1, k2, k3). Disclosing

only one third of the kek key should not impact the API. Actually
the API should be safe, even if two parts are leaked. Let the disclosed
part be k3.

– The encryption of the XOR of other two parts, as an incomplete im-
portation key. That XOR would be xor(k1, k2), or equivalently xor(kek, k3).
As done in [8], we choose the second form, since we can avoid introduc-
ing the constants k1, k2 in our specification. So, the initial knowledge
also contains enc(xor(kek, k3), xor(imp, kp, km)).

– In [15], an additional incomplete importation and exportation key,
kek2, is also used, so we include it. The actual values known to the ad-
versary are enc(kek2, xor(imp, kp, km)) and enc(kek2, xor(exp, kp, km)).

2.2 Bond’s Attack

We now discuss Bond’s attack [3] to the API defined above. First, we run
f2 as follows, using the known term enc(xor(kek, k3), xor(imp, kp, km)).

f2(imp,
xor(k3, pin, data),
enc(xor(kek, k3), xor(imp, kp, km)))

⇒ enc(xor(kek, pin, data), xor(imp, km))

The term produced above is unusual, in that normally only kek should
have been tagged as an importation key. Instead, the importation key
above also carries pin and data, XORed with kek.

5

We can then run f3, passing the above as its second argument:

f3(data,
enc(xor(kek, pin, data), xor(imp, km)),
enc(p, xor(data, xor(kek, pin, data))))

⇒ enc(p, xor(data, km))

Note that the third argument above is indeed known to the adversary: by
the XOR laws, is equivalent to enc(p, xor(pin, kek)).

The result of f3 certifies p as a data key. This is indeed an unwanted
result for the API, since now we can apply f5 to it.

f5(acc, enc(p, xor(data, km))) ⇒ enc(acc, p)

Recall that enc(acc, p) is the secret PIN of the card of the account acc.
So, the above actually computes the PIN of any card, given its public
account number acc. Therefore, the CCA security was broken.

2.3 Bond’s Amended API

One might argue that notations such as

xor(data,X)

are dangerous. The above formula suggests a fixed, rigid structure. Fur-
ther, one might also be misled into believing that values of that form are
somehow related to the constant data. Instead, any value Y may be easily
written in the above form, as Y = xor(data, xor(data, Y)). The attack of
Sect. 2.2 exploits this fact. The API expects a value of the form above,
intuitively relying on data being a “component” of it. The attack instead
passes xor(kek, pin), leveraging the equation above.

Bond suggested an amended version of the API. The basic idea behind
the fix is rather simple: do not use XOR in the second argument of enc.
Using XOR does not ensure a rigid term structure in keys, and many
algebraic rules are available to the adversary. Rather, one should use a
primitive with as few algebraic rules as possible. Bond suggested using
hashes for this. Below, we show the amended operations with a binary
hash function.

f1(X,Y, enc(Z, hash(hash(X, kp), km))) ⇒ enc(xor(Z, Y), hash(hash(X, kp), km))
f2(X,Y, enc(Z, hash(hash(X, kp), km))) ⇒ enc(xor(Z, Y), hash(X, km))
f3(T, enc(K, hash(imp, km)), enc(X, hash(T,K))) ⇒ enc(X, hash(T, km))
f4(T, enc(K, hash(exp, km)), enc(X, hash(T, km))) ⇒ enc(X, hash(T,K))
f5(X, enc(K, hash(data, km))) ⇒ enc(X,K)
f6(enc(X,K), enc(K, hash(data, km))) ⇒ X

6

The API is unchanged, except for hashing having replaced XOR in the
key arguments.

3 Towards Fully Automatic Verification

Courant and Monin [8], with their hand-written Coq-assisted proof, es-
tablished the secrecy property of Sect. 2.1 w.r.t. the amended API. We
now aim at achieving the same property, automatically.

For modelling the CCA API, we adopt (a slight variant of) the ap-

plied pi calculus [1], a simple process algebra [11] allowing processes to
exchange arbitrary terms. In this calculus, terms are handled up-to some
equivalence relation. Here, this equivalence is defined by the following
rewriting rules, modelling the usual algebraic properties of XOR, as a
binary function. These are the same properties used in [8].

xor(X,Y) ⇒ xor(Y,X) xor(xor(X,Y), Z) ⇒ xor(X, xor(Y,Z))
xor(0,X) ⇒ X xor(X,X) ⇒ 0

We also give rewriting rules for encryption and decryption.

dec(enc(M,K),K) ⇒ M enc(dec(M,K),K) ⇒ M

The first one is the usual cancellation rule. The second one is the surjective

encryption rule, that is satisfied by some cryptosystems. The CCA does
not require that rule to hold, in order to function properly. However, if
it does happen to hold in the particular cryptosystem used in the API
implementation, the adversary could use the rule to attack the API. So,
by including it, we consider this stronger adversary model. Finally, we
have no rewriting rules for hash(X,Y): the hash algebra is free.

The syntax of the applied pi processes is shown below: M,M ′ are
terms, X,Y,Z are variables, π is a prefix, P is a process.

π ::= in X | out M | [M = M ′] | let X = M | new X | repl

P ::= nil | π . P | (P |P)

Intuitively, nil is a process that performs no actions; π.P executes the
prefix π and then behaves as P ; P1|P2 runs concurrently the processes
P1 and P2. Prefixes perform the following actions: in X reads a term
from the network and binds X to it; out M sends a term to the network;
[M = M ′] compares the terms M and M ′, stopping the process if they
differ; let X = M locally binds X to the value of M ; new X generates a

7

fresh value and binds X to it; repl spawns an unlimited number of copies
of the running process, which will run independently.

As usual, a free variable is one that does not occur under an input,
let, or new. A process P is closed iff P has no free variables.

3.1 Semantics

We now give a reduction semantics for the applied pi closed processes.
First, we fix a constant base, and two unary function symbols next, val
such that none of them occurs in the rewriting rules at hand. This always
can be done, since we only use a finite set of rewriting rules. Hence, terms
built only from base, next, val are unaffected by rewriting.

Then, we consider processes up to the abelian monoid laws:

nil | P ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

We now define the reduction relation P −→ Q. When a ground term
M is disclosed by the process P , we label the corresponding reduction

accordingly: P
M
−→ Q. Below, M and N are ground terms, and α denotes

an optional output label.

Comm out M .P | in X .Q −→ P | Q{M/X}

Out out M .P
M
−→ P

Match [M = M].P −→ P
Let let X = M .P −→ P{M/X}
New new X .P −→ P{M/X} where M = genFresh()
Repl repl.P −→ P | repl.P
Rew P{M/X} −→ P{N/X} if M ⇒ N

Par P | R
α
−→ Q | R if P

α
−→ Q

Rule Comm makes two processes communicate, exchanging a term M .
An output prefix may also be fired independently of an input, using rule
Out: in this case M is disclosed, so we add it as a label of the transition.
Rule Match allows a process to proceed only if the two (ground) terms
are identical.

In rule New we generate a fresh value for X. This is done by the call
to genFresh(), that chooses a fresh term value (not generated beforehand)
in the sequence

val(base), val(next(base)), val(next(next(base))), . . .

This peculiar sequence was chosen because its elements behave as dis-
tinct constants symbols. That is, it is not possible to compute a given

8

element from the others, through applications x1, . . . , xn 7→ f(x1, . . . , xn)
and rewritings. Unlike an infinite sequence of distinct constants symbols,
the above uses only a finite number of symbols, making it amenable to
static analysis.

Rule Repl spawns a new copy of the process P . Note that Repl does
not consume the repl prefix, so it can be used to spawn an arbitrarily
large number of processes. Rule Rew allows to rewrite any occurrence of
a ground term inside a process, so that one effectively handle terms up
to rewriting. Finally, rule Par allows a selected process P to act indepen-
dently of its parallel processes, forming the rest of the system R.

3.2 A Specification for the CCA API

In Fig. 1, we provide a high-level specification for the (amended) CCA
API. To this purpose, we use the function symbols f1, . . . , f6. In Sect. 2.3,
we gave the actual rewriting rules defining the semantics to all the API
operations. We use the same rules here.

System = Device | Init | DY | Test

Device = repl.in X .in Y .in Z .out f1(X, Y, Z) .()
| repl.in X .in Y .in Z .out f2(X, Y, Z) .()
| repl.in X .in Y .in Z .out f3(X, Y, Z) .()
| repl.in X .in Y .in Z .out f4(X, Y, Z) .()
| repl.in X .in Y .out f5(X, Y) .()
| repl.in X .in Y .out f6(X, Y) .()

Init = out 0 .out data .out pin .out imp .out exp .out kp .out acc .out k3 .

out enc(p, hash(pin, kek)) .

out enc(xor(kek, k3), hash(hash(imp, kp), km)) .

out enc(kek2, hash(hash(imp, kp), km)) .

out enc(kek2, hash(hash(exp, kp), km)) .

out enc(exp1, hash(exp, km)) .()
DY = repl.in X .in Y .out xor(X, Y) .out hash(X, Y) .

out enc(X, Y) .out dec(X, Y) .out val(X) .out next(X) .()
| repl.new Nonce .out Nonce .()
| repl.in X .repl.out X .()

Test = repl.in X .(let Y = kek .[X = Y].out forbidden(X) .()
| let Y = km .[X = Y].out forbidden(X) .()
| let Y = p .[X = Y].out forbidden(X) .()
| let Y = enc(acc, p) .[X = Y].out forbidden(X) .())

Fig. 1. CCA Specification in the applied pi calculus

Process Device is simple: it waits for inputs, performs an API opera-
tion, and then outputs the result. All the operations f1, . . . , f6 are under
a repl, so they are always available, and they can be invoked in any order.

9

Component Init discloses all the initial knowledge of the adversary:
the constant 0, all the tags, and all the encrypted keys (each one with its
tag). The k3 key is also given to the adversary, as discussed in Sect. 2.1.

Component DY is the most powerful Dolev-Yao adversary [9]. Intu-
itively, this adversary tries any available option (building terms, invoking
the API, etc.) in a non-deterministic fashion. The knowledge of this ad-
versary is made of all the terms that processes output. More in detail,
process DY is made of three parts. The first part (non-deterministically)
builds terms using all the function symbols by applying them to all the
known terms. Built terms are output, augmenting the knowledge of the
adversary. Note that these terms can also be received by Device, so API
operations are invoked with them. The second part of DY generates an
unlimited number of fresh values, allowing the adversary to use them.
The third part of DY replicates all the known terms indefinitely. This
replication is needed, because otherwise inputs would consume known
terms, enforcing an unwanted single-use policy on them. Further, DY
can not send a term to a Device so that it is received by a specific input,
e.g. for f1 rather than for f2. Rather, communication is completely non-
deterministic. This however does not make the adversary weaker, since
we shall consider all the possible outcomes.

Finally, process Test checks for secret leaks. The secret terms are
those discussed in Sect. 2.1. Whenever a leak is detected, the witness
term forbidden(X) is output, where X is the leaked secret. We also add a
more general witness term fail, using the rewrite rule

forbidden(X) ⇒ fail

The secrecy goal for our specification can now be simply stated as

¬∃α1 . . . αn(System
α1−→ · · ·

αn−−→
fail
−−→)

where the αi denote optional outputs.

3.3 Static Analysis

We verified the secrecy goal with the Rewrite [14] tool. Rewrite performs
a control flow analysis [12,2] on applied pi processes, using tree automata
techniques [6,10] to finitely represent sets of terms. Terms are handled
up to rewriting: the rewriting rules are given as an input to the tool,
just as the process. In [16], we used Rewrite to check protocols involving
complex cryptographic primitives, such as exponentiation. Here, we apply

10

Rewrite to the CCA API. We provided the tool with both process System
and all the rewriting rules shown before. These include those for XOR,
encryption, and the (amended) API operations.

The result of running Rewrite is an over-approximation for the set
of ground terms output by process System. So, if there is no fail in the
approximation, we can safely deduce that the secrecy result holds. It turns
out this is indeed the case: inspecting the computed result revealed no
fail term, so the property was established. Rewrite did not require any
manual intervention during this computation. The time required for this
was also acceptable: about three hours, on our desktop machine1.

We do not provide here a detailed description of the actual approxi-
mation technique used in Rewrite, referring the reader to [16].

3.4 A Refinement of the CCA API Specification

We also experimented with a more detailed, low-level specification. Rather
than describe the abstract API operations through rewriting rules, we can
actually provide the code for an implementation of those. Basically, each
operation can be implemented in a few steps: the keys given as input are
decrypted, and then used to compute the result of the operation.

The abstract Device component can be changed as follows:

Device = repl.in X .in Y .in Z .let Z2 = dec(Z, hash(hash(X, kp), km)) .

out enc(xor(Z2, Y), hash(hash(X, kp), km)) .()
| repl.in X .in Y .in Z .let Z2 = dec(Z, hash(hash(X, kp), km)) .

out enc(xor(Z2, Y), hash(X, km)) .()
| repl.in T .in K .in X .let K2 = dec(K, hash(imp, km)) .

let X2 = dec(X, hash(T, K2)) .out enc(X2, hash(T, K2)) .()
| repl.in T .in K .in X .let K2 = dec(K, hash(exp, km)) .

let X2 = dec(X, hash(T, km)) .out enc(X2, hash(T, K2)) .()
| repl.in X .in K .let K2 = dec(K, hash(data, km)) .

out enc(X, K2) .()
| repl.in X .in K .let K2 = dec(K, hash(data, km)) .

let X2 = dec(X, K2) .out X .()

Now the specification does not use the f1, . . . , f6 terms, since their se-
mantics was embodied into process Device. Accordingly, we can discard
the corresponding rewriting rules, and run the tool on the new specifi-
cation. We ran Rewrite, and once more observed no fail term in its over-
approximation. Therefore, we conclude this implementation preserves the
security goals of Sect. 2.1. Computing the approximation took only a few
minutes, showing a significant improvement w.r.t. the experiment of Sect.

1 Reference: PowerPC G4 1.25GHz, 768MB RAM.

11

3.3, that took one hour. This is because we removed the complex rewriting
rules of f1, . . . , f6, leaving only the simpler ones.

For completeness, we also ran the tool on the flawed API. As expected,
the over-approximation did include fail, detecting the possibility of a flaw.

4 Conclusions

We studied the verification problem of cryptographic APIs. As a real-
world example, we considered the CCA API. This API was shown secure
in [8], through a detailed manual proof. Here, we reported about the
fully automatic verification of the same security statement. To the best
of our knowledge, this is the first fully automatic proof of it. Moreover,
our technique is general: we plan to apply it to similar APIs, including
other versions of the CCA one.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. of POPL’01, pages 104–115, 2001.

2. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proc. of CSFW 2003, pages 126–140, 2003.

3. M. Bond. Attacks on cryptoprocessor transaction sets. In CHES, pages 220–234,
2001.

4. IBM CCA basic services reference and guide, release 2.54.
5. IBM CCA devices. http://www-03.ibm.com/security/cryptocards/.
6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

7. The Coq proof assistant. http://coq.inria.fr.
8. J. Courant and J. Monin. Defending the bank with a proof assistant. In Proceedings

of WITS 2006, pages 87–98, 2006.
9. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, IT-29(12):198–208, 1983.
10. G. Feuillade, T. Genet, and V. V. T. Tong. Reachability analysis over term rewrit-

ing systems. Journal of Automated Reasoning, 33:341–383, 2004.
11. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, 1999.
12. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.

ENTCS, 62, 2002.
13. Otter: an automated deduction system. http://www-unix.mcs.anl.gov/AR/otter/.
14. The Rewrite protocol analysis tool. http://www.di.unipi.it/∼zunino/software.
15. P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. L. Rivest, and

R. Anderson. Robbing the bank with a theorem prover. Technical Report UCAM-
CL-TR-644, University of Cambridge, 2005.

16. R. Zunino and P. Degano. Handling exp,× (and timestamps) in protocol analysis.
In Proceedings of FoSSaCS 2006, volume 3921 of LNCS, pages 413–427, 2006.

12

