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Abstract Alice: | will lend my airplane to you, Bob, provided that |
borrow your bike.
We propose a formal theory of contract-based comput- ) ) ) )

ing. We model contracts as formulae in an intuitionistic BOP: 'will lend my bike to you, Alice, provided that | bor-
logic extended with a “contractual” form of implication. row your airplane.
Decidability holds for our logic: this allows us to mechan-
ically infer the rights and the duties deriving from any set
of contracts. We embed our logic in a core calculus of con-
tracting processes, which combines features from concur-
rent constraints and calculi for multiparty sessions, whil
subsuming several idioms for concurrency.

Let us writea for the atomic proposition “Alice lends her
airplane” and for “Bob lends his bike”. A (wrong) formal-
isation of the above contracts in classical logic could nhode
Alice’s contractA asb — a, and Bob'sB asa — b. How-
ever, from this we cannot deduce the expected agreement,
i.,e. AN B — a A bdoes not hold. To solve this issue, we
propose Propositional Contract Logic (PCL), that extends
) intuitionistic logic IPC with acontractual implicationcon-

1 Introduction nective—. In PCL we have the desired agreement:

In Web transactions, the typical dynamics is that a client (b—»a) A (a—»b) — aAb
chooses a service provider that she trusts, relying on the
fact that the service implements the required featuresh Suc To put our contracts at work, we introduce a process calcu-
features are typically written in a “service level agreethen lus which embeds our logic. This calculus belongs to the
(SLA). Although this document is legally binding, itis nota family of concurrent constraints [35], using PCL formulae
formal specification. Formalising it would be desirable, fo as constraints. A process can assert a constrgamtPCL
two main reasons. First, a formal SLA could be exploited formula) through the primitiveell c. For instance, the fol-
by the client to mechanize the search of a service meetinglowing process models Alice exposing her contract:
her requests. Second, in the case the provider does not hon-
our its SLA, automatic means could be devised to resolve (z) tellb(z) — a()
the dispute. This would be more practical than taking legal o
steps against the provider, especially for transactioas de Formally, this will addb(z) — a(z) to the set of con-
ing with small amounts of money. straints. The formal parameterrepresents the |den'F|f|er
The interaction among parties has then to be regulated byOf the act_ual session to be gstabhshed between.Allce and
a suitablecontract which formally subordinates the duties BOP- As it happens for sessions centered calculi [38, 14],
of a client to the duties of a service, axite versa The sessions are an important aspect also in our calculus, since
crucial problems are how to model a contract, how to infer they allow for distinguishing among different instanimats
when a set of contracts gives rise to an agreement amongf‘c the same contract. The outer) is a scope delimitation

the stipulating parties, and how to single out the respoasib 107 the variabler, similarly to the Fusion calculus [32].
of a possible violation. After having exposed her contract, Alice will wait un-

til finding that she has actually to lend her airplane to Bob.
An example. To give the intuition about our contracts, Thisis modelled afuse, a(x). The primitivefuse, cimple-
suppose there are two kids: Alice, who has a toy airplane,ments a contract-based multiparty agreement. To do that, it
and Bob, who has a bike. Before sharing their toys, the two checks the entailment of the constrainand binds the vari-
kids stipulate the following “gentlemen’s agreement”: ablez to an actual session identifier, shared among all the



parties involved in the contract. So, we will model Alice as: A generalisation of the above property to the case of
contracting parties is also desirable. It is a sort of “circu
lar” handshaking, where th@ + 1)-th party, in order to
promise some duty; 1, relies on a promisg; made by the
i-th party (in a circular fashion, the first party relies on the
promise of the last one). In the casengbarties, we expect:

Alice = (z) (tellb(z) — a(x). fuse, a(z). lendAirplane)

where the procedsndAirplane (no further specified) mod-
els Alice actually lending her airplane to Bob. The overall
behaviour of Alice is then(i) issue the contrac{ji) wait

until discovering the duty of lending the airplan@j) fi- F(pr = p2) A A (Pae1 = pn) A (Dn — p1)
nally, lend the airplane. Dually, we model Bob as follows: — pIAApn @)
Bob = (y) (tella(y) — b(y). fuse, b(y). lendBike) As a concrete example, consider an e-commerce scenario

where a clientC' can buy items from a selle$, and pay
them through a credit card. To mediate the interaction be-
tweenC andS, there is a banlB which manages payments.
The contracts issued by the three parties could be as fallows

A possible interaction between Alice and Bob will be the
following, wheren stands for a fresh session identifier:

Alice|Bob —* (n) (lendAirplane{"/x} | lendBike{"/y})
Client: 1 will click “pay” provided that my item is shipped
As expected, the resulting process shows Alice and Bob
actually sharing their toys, in the session identifiechby
The logic PCL also allows for a more precise model of Bank: | will transfer money to the seller provided that the
the above scenario, by linking the contracts with the idgnti client clicks “pay”.
of the principals issuing them (see Ex. 3). This information
can be exploited in our calculus to automatically detect the
responsible of a violation (see e.g. Ex. 6).

Seller: 1 will ship your item provided that | get the money

Let the atomic propositionship, click, andpay denote,
respectively, the facts “seller ships item”, “client cl&ck
pay”, and “bank transfers money”. The above contracts can

o . . then be modelled as:
Contributions. We propose the logic PCL, which ex-

tends IPC with contractual implication. We provide it with ' = ship — click B = click — pay § = pay —» ship
an Hilbert-style axiomatisation and a Gentzen-style sefjue
calculus, which we prove equivalent. We study the relations Then, by property (2) we deduce a successful transaction:
between PCL, IPC and classical logic. The main results ]
about PCL are cut elimination and decidability. We imple- FCANBAS — pay/Aship
ment a proof search algorithm for PCL [37], also includ-
ing an extension with a lax modality, to explicitly link con-
tracts and principals. We then exploit PCL as a basic build-
ing block for designing a calculus of contracting processes Fp—>p) — p (3)
Our calculus is expressive enough to encode several con-
currency idioms, among which Linda, thecalculus and Intuitively, (3) models that promising provided thap, im-
graph rewriting. We show our logic and calculus applicable pliesp (actually, also the converse holds, so that promise is
to model real-world scenarios through several examples. equivalent tg). It also follows from (1) whem = q.

Because of space constraints, we include all the proofs, Another generalisation of the toy-exchange scenario to
the encodings, as well as further results and examples abouthe case of: kids is also desirable. It is a sort of “greedy”

Note that, in the special cage= 1, the above “circular”
handshaking property turns into a particularly simple form

our logic and calculus, in two Technical Reports [6, 5]. handshaking, because now a party promisesnly pro-
vided thatall the other parties promise their duties, i.e.
2 A Logic for Contracts D1y Pim1,Pit1; - Dn-

AV ((pl A Apict Apig1 A== App) = pi> @)

Desirable properties. We start by characterizing our
prop y g — p1 A App

logic through a set of properties that we would expect to
be enjoyed by any logic for contracts. We will now focus on further logical properties of con-
As shown in Sect. 1, a basic property of contractual im- tractual implication. As shown by (1), a contract» ¢ be-
plication is that of allowing two dual contracting parti@s t comes effective, i.e. implies the promigewhen matched
“handshake”, so to make their agreement effective. This ispy a dual contracg —» p. Even more directlyp — ¢ should
resumed by the followinandshakingroperty: be effective also when the premigés already true:

Fp—-qAN(g—>p) — pAq 1) FpA(p—q) — q (5)



In other words, contractual implication should §teonger Note that (8), (9), (10) cover three of the four possible sase

than standard implication, i.e.: of transitivity which mix standard and contractual implica
tions. The fourth case would, instead, make the two forms
Fp—>ad—(—4q (6) of implication coincide, so it imota desirable property.

On the other hand, we do not want that also the converse o :ﬁjn?{thgr t?]ii'r.?p Ielp;ipeét)énls (t:r;?]tt Ifc? pr:f)rr?@f a_I-e
holds, since this would equate the two forms of implication: readytrue, s alsotru y ractwhich promyses

thatis,i” (p — q) — (p > @)

We want contractual implication to share with standard
implication a number of properties. First, a contract that ¢ course, we do not want the converse to hold: a con-
promises true (writtel) is always satisfied, regardless of ,5ct not always implies its promisé (p — q) — q.
the precondition. So, we expect the following tautology:

Fq — (p—q) (11)

Syntax. The syntax of PCL extends that of IPC. It in-
cludes the standard connectivesA, V,— and the con-

Differently from standard implication, we do not want tractual implication—. We assume a denumerable set
a contract with a false precondition (writter) to always ~ {P-d, s, ...} of prime (atomic) formulae. PCL formulae
hold, i.e.l/ 1L — p. To see why, assum¢ —» pis a are denoted with the lettefs ¢, , s, . .. (note that the font

Fp—>T @)

tautology, for allp. Then, it would also be the case for= differs from that used for prime formulae). The precedence
1, so (3) would deduce a contradictiop. — 1) — L. of'IPC operators is, from highest to lowest: A, vV, —. We
We want— enjoy transitivity, similarly to—: stipulate that- has the same precedence-as
Fp—=q) A(g—=1) — (p—>1) (8) Definition 1 The formulae oPCL are defined as:
Back_to our previ_ous example, transitivity would allowthe p .= L | T | p | =p | pvp | pAD | p—D | p—>p
promise of the clientship — click) and that of the bank
(click — pay) to be combined in the promisaip — pay. We letp < ¢ be syntactic sugar fofp — ¢) A (¢ — p).

Contractual implication should also enjoy a stronger
form of transitivity. We illustrate it with the help of an ex- We now present an Hilbert-style axiomatization for PCL.
ample. Suppose an air-flight customer who wants to book a
flight. The customer contract promises to pay the required Definition 2 The proof system oPCL comprises all the
amount, provided that she obtains a flight reservation. Sup-axioms of IPC, the Modus Ponens ruaier, and the axioms:
pose now that an airline company starts a special offer, inT ST

the form of a free drink for each customer. [2&rd)

(p—>p)—p [Fix]

Customer = bookFlight — pay W —p) —p—>q —(g—q)— (@ —q) [PrePosT
AirLine = pay — bookFlight A freeDrink

L The above axioms are a subset of the properties dis-
Of course, the two contracts should give rise to an agree- : : .
cussed above. The axiomkro is a subcase of (7kix is

ment, because the airline company is promising a better.

. : ust (3), while the axionPrePost combines (9) and (10). As
service than the one required by the customer contract. W . . :
P s T ] expected, this set of axioms is actually sound and complete
then expect to be able to “weaken” theérLine contract:

w.r.t. all the properties marked above as desirable.

F AirLine — (pay — bookFlight) )
Lemma 1 Properties (1-11 ) are theorems &CL. Also:
Alternatively, one could make the two contracts match by
making stronger the precondition required by the customer: p>ON(@—>71r)— (p—> (gAT))
(p—=(qgAr)) =@ Np—>r)
p>q)Vp—>r)— > (@qVr)
(

p—q)— (¢ —p)—q)

F Customer — (bookFlight A freeDrink — pay)

More in general, we want the following two properties
hold for any logic for contracts. They say that the promise
in a contract can be arbitrarily weakened (9), while the pre- \ye present below some of the most significant results
condition can be arbitrarily strengthened (10). about our logic. For a more comprehensive account, in-

cluding detailed proofs of all our results, see [6].
Fp—=q A (@—d) — (p—>4d) ) g P N

, , First, PCL is consistent. Also, negation-free formulae do
F@ —=p) Alp>q9 — (>0 (10) not lead to inconsistencies.



Theorem 1 PCL s consistent, i.et/ 1. Also, ifp is free Theorem 5 The logicPCL is decidable.
from{L, -}, thent/ p — L.

As a further support to our logic, we have implemented
As expected, the following ameot tautologies of PCL : a proof search algorithm [37], which decides whether any
given formula is a tautology or not. Despite the problem
7p—a)—=p—>a F—>a—g being PSPACE complete [36], the performance of our tool
7L—-p 7 (@—=p)—a) = (—0q is acceptable for the examples presented in this paper.

We now establish some expressiveness results, relating
PCL and IPC. More in detail, we consider whether sound
and complete homomorphic encodings exist, i.e. whether
—» can be regarded as syntactic sugar for some IPC context.

Note that if we augment our logic with the axiom of ex-
cluded middle, theifp — ¢) < g becomes a theorem. This
would make contractual implication coincide with right pro
jection, so losing most of the intuition behind mutual agree
ments. For this reason we use IPC, instead of classical logic pefinition 4 A homomorphic encoding: is a function

as the basis of PCL . o o from PCL formulae to IPC formulae such thatin is
Another main result about PCL is its decidability. To the identity on prime formulas], and L; it acts ho-

prove thgt, we have dewsed a Gentzgn—stylle sequent calcUmomorphically ona, Vv, —, —; it satisfiesm(p — ¢) =

lus, equivalent to the Hilbert-style axiomatisation. Ir-pa C[m(p), m(q)] for some fixed IPC contegt(e, o).

ticular, we have extended the sequent calculus for IPC pre-

sented in [33] with rules for the contractual implication Of course, each homomorphic encoding is uniquely deter-
Note thatPrePosTintroduces— on the right, and eliminates  mined by the context. Severacompleteencodings exist:

iton the left (similarly e.g. too L of lax logic [19]). Lemma 2 The following homomaorphic encodings are com-

Definition 3 The sequent calculus #fCL includes all the plete, i.e. they satisty p = F;pc m;(p). Also, they are
rules for IPC [6], and the following additional rules. pairwise non-equivalent in IPC (the primds arbitrary).
[ZERCQ] [Fix] [PREPOST] m ( )
Lip—q,rtp I'p—qabtp ma ( ) )
I'kyq L,p—qqbtr Lp—q,qkb ma(p — q) = ~—(ma(q) — ma(p))
ms( )
i ( )

I'Hp—>gq p—>qtr I''p—»>qtFa—>0>

We now establish the equivalence between the two log-
ical systems of PCL. In the following theorem, we denote However, there can be remundencodings, se- is not just
with g provability in the Hilbert-style system, whileg syntactic sugar. Indeed, a sound encoding would allow us
is used for Gentzen-style provability. to derive Peirce’s axiom in PCL, violating the fact that PCL

conservatively extends IPC [6].
Theorem 2 For all PCL formulaep: Fg p <= 0 F¢g p.

Our sequent calculus enjoys cut elimination. The proof 11€orem 6 If m is a homomorphic encoding ¢¥CL into
is non-trivial, since the rules for» are not dual, unlike ~ 'PC: thenm is not sound, i.e. there existsRCL formulap
e.g. left/right rules forr. Nevertheless, the structural ap- SUCh that-rpc m(p) and7 p.
proach of [33] can be adapted. A cut on a formples re-
placed by cuts on strict subformulaegfand cuts omp hav-
ing a shorter proof tree. Some insightful cases of our proof,
as well as the induction metric used, are in Appendix A; the
full details are in [6].

Theorem 3 (Cut Elimination) If p is provable in PCL, Example 1 (Online sale)We describe a possible online

then there exists a proof gfnot using thecur rule. sale between two parties. To buy an item, the buyer con-
tacts the bank, to reserve from his account a given amount

The subformula property holds in PCL. Cut-free proofs of money for the transaction. When this happens (mod-
only involve subformulae of the sequent at hand. elled with the prime formuléck), that amount is no longer
available. Then, the buyer makes an offer to the seller
(offer). When provided with a good offer, and the money
has been reserved, the seller will send the itesnd). Oth-
erwise, she cancels the transactiabdgrt). When the trans-

Theorems 3 and 4 allow for exhaustively searching the action is aborted, the bank cancels the reservatiordck),
proof space, so implying decidability. so the money can be reused.

In [6] we have proved further properties of PCL, includ-
ing some relations between PCL and IPC, the modal logic
S4, and propositional lax logic. Also, we have explored
there further application scenarios for our logic.

Theorem 4 (Subformula Property) Let D be a cut-free
proof of I' = p. Then, the formulae occurring iv are
subformulae of those occurring Inandp.



Formally, the buyer agrees tock A offer, provided that issued by a giveprincipal. It would then be useful to rep-
either the item is sent, or the reservation is cancelled. Theresent the binding between principals and contracts within
seller agrees to evaluate the offer. The bank agrees to tancethe logic. This would allow, for instance, to single out the

the reservation when the transaction is aborted. principal who is responsible for a violation, and possilaly t
take countermeasures against him. To this aim, we extend
Buyer = (send V unlock) — (lock A offer) our logic with asays modality, similarly to [21].

Seller = offer — ((lock — send) V abort)

TRt says
Bank = (lock A abort) — unlock Definition 5 The syntax of PCL**Y* extends that of

PCL (Def. 1) with the construat says p, where we assume

Under these assumptions, either the item is sent, or thea set of (atomicprincipals ranged over by, b, . ..

transaction is aborted and the reservation cancelled: _
The formulaa says p represents the fact that the prin-

F (Buyer A Seller A Bank) — (send V (abort A unlock)) cipal a has issued a contrapt We now develop the proof
theory of PCL°“Y®. Essentially, we extend the PCL axioms

Example 2 (Dining retailers) Around a table,n cutlery  with those of the logic ICL [21]. This is an indexed lax

retailers are about to have dinner. At the center of the ta- |ogic, where the lax modality correspondsitgs. Remark-

ble, there is a large dish of food. Despite the food being aply, this extension preserves all the main results of PCL,
delicious, the retailers cannot start eating right now. To in particular its decidability.

do that, and follow the proper etiquette, each retailer reed

a complete cutlery set, consisting ofpieces of different  Definition 6 The Hilbert-style axiomatisation dPCL**V*
kinds. Each of the retailers owns a distinct set of piece extends that oPCL (Def. 2) with the following axioms:
of cutlery, all of the same kind. The retailers start distugs

about trading their cutlery, so that they can finally eat. p — (a says p) [savsR]
We formalize this scenario as follows. We number the (a says a says p) — a says p [SavsMm|
retailersry, ..., 7, together with the kinds of pieces of cut- (p — q) — (a says p) — (a says q)  [SavsF]
lery, so thatr; initially owns n pieces of kind. We then
write g; ; for “ r; givesa piece (of kind) to r;”. Since re-  Example 3 We now make explicit the binding between the
tailers can use their own cutlery, we assugigto be true.  duties and the principals of the toy exchange example of
Retailerr; can start eating whenever = /\; g; ;. Instead,  Sect. 1. Alice commits herself to lend her airplane, pragide
he provides the cutlery to others whenepgr= A ; g; ;. that Bob commits himself to lend his bike (aride versa.
Suppose that; commits to a simple exchange witft
they commit tog; — g2 and g2 — g1, and the Proy = Alice says ((Bob says b) — a) A
exchange takes place singg: A gi,2 can be derived. Bob says ((Alice says a) — b)
While this seems a fair deal, it actually exposesto a
risk: if rs, ..., r, perform a similar exchange with,, then Such contract implies the expected duties:

g2,i A gi 2 for all 4. In particular, g; » holds for alli, sory
can start eating. This is however not necessarily the case
for r1, sincers has not committed to any exchange with

A wise retailer would then never agree to a simple ex-
changeg,; — gi1,2. Instead, the retailer; could commit
to the following safer contract:

F proy — Alice says a N Bob says b

The above duties can be exploited by a third party (a sort of

“automated” judge) which has to investigate the responsi-

bilities of the involved parties, in the unfortunate casatth

the contract is not respected. For instance, if our judge is

given the evidence that Alice’s airplane has never been lent

to Bob, then he will infer that Alice has not respected her
The idea is simpler; requires each piece of cutlery, i.e. contract (and possibly punish her), that is:

r1 requires to be able to start eating(). When this hap-

pens;; agrees to provide each other retailer with a piece of =~ Ptoy /A 7@ — (Alice says a) A —a — Alice says L

his cutlery ;). If each retailerr; commits to the analogous

contract, we have the desired agreement (proof in [6]).

“Ae ) = e Explicitly representing principals has some additional
Principals. Asillustrated by the examples above, PCL al- benefits, especially when putting our logic at work in in-
lows for inferring whether some promise is implied by a set secure environments populated by attackers. Actually, an
of contracts. In real-world scenarios, each contract véll b attacker could maliciously issue a “fake” contract, whege h

er »p1 =81,1N821N - A8n1 81,1 N812N - ABin

In Ex. 6 below, we shall see how the notion of principals is
exploited in our calculus of contracting processes.



makes a promise that he cannot actually implement, e.g. be-To make that happen, variabl€sare suitably instantiated
cause the promised task can only be performed by anotheto names. The prefifuse,, ¢ is peculiar of our contract cal-
party. By binding each contract with its principal, itisgas culus, and drives the fusion of variables. Liksk, it stops

to realize when someone has attempted such a fraud, bea process until instantiating some variables to names makes
cause the principal who has signed the contract is differentc deducible. Note that the set of such variables is not spec-

from who is due to implement the promised behaviour. ified in the prefix (as it was fosiskz); instead, it is inferred
Back to our technical development, all the main results from the context according to thecal minimal fusiorpol-
of PCL are also enjoyed by PCtY® (see [6] for details). icy, to be introduced in Def. 7. The variabtein fuse, ¢

_ _ _ is instantiated to a fresh name, that intuitively represent
Theorem 7 If pis provable inPCL****, then there exists a  fresh session identifier. Indeed, the intended usefaée, ¢

proof ofp withoutcur. Also, PCL*** is decidable. is to initiate a new session, by accepting a contract which
implies c. To do that,z is replaced by a fresh session ID,
3 A contract calculus and some variables in the context are possibly instantiated

_ to names (e.g. to bind unknown principals to actual ones).
We now define our calculus. We use a denumerable set ofinstead, arask can be used to join an already initiated ses-

namesq, m, . .. and a denumerable setwdriablesz, y, . . . sion (no fresh ID is then generated).
Metavariables:, b range over both names and variables. In-  Free variables and names, as usual, are those not un-
tuitively, names play the same role as in thecalculus,  der a delimitation. Alpha conversion and substitutions are

while variables roughly behave as names in the fusion cal-defined accordingly. As a special case, when a variable
culus [32]. Distinct names represent distinct concrete ob- ;: js instantiated to a name, the prefose, ¢ behaves as
jects, each one with its own identity. Instead, distincivar a plain ask ¢, i.e. (fuse, c){?/=} = ask (c{"/z}). Also,
ables can béused by instantiating them to the same name. (askyg c){n/=} = asky (c{n/z}). Henceforth, we consider
Unlike [32], our calculus can fuse a variable only once. processes up-to alpha conversion.

Syntax. We extend prime formulae of PCL with names Semantics. We now define the semantics of processes
and variables as parametefg(a, b). Note that we do not  through a two-layered transition system (Fig. 3). The bot-
introduce quantifiers in PCL, which then remains a propo- tom layer is an LTS>> between processes, which provides
sitional logic. Indeed, the formula(a,b) is still atomic  a compositional semantics. Actionsare as follows, where
from the point of view of the logic. Similarly, names and (¢ denotes a set of PCL formulae.

variables can appear as principalsiinays p. Intuitively,

here names model known principals, while variables still- a =7 |C |CF2 ¢|CFE ¢|CH L | (a)a (actions)
unknown ones (see e.g. Ex. 6). We let lettergrange over

formulae, while letters:, v range over L, —}-free formu- The actionr represents an internal move. The act@n
lae. The syntax of our contract calculus follows. is an advertisement of a set of active constraints. The ac-
tion C F;ﬁ_‘ ¢ is atentativeaction, generated by a process
7 =7 | tellu | checkc | askzc | fuse, ¢ (prefixes) attempting to fire ansk; c prefix. This action also carries

Po—u | Se; ™i-P | P|P | (a)P | X(d@) (processes) a setQ as the collection of active constraints discovered so
far. Similarly forC' £ ¢ andfuse, c, as well as folC' I/ L

Processes are mostly standard, and include active conandcheckec. In the last case(’ also includes:. The de-

straintsu, sum of guarded processés; w;.FP;, parallel limitation in (a)« is for scope extrusion, as in the labelled

compositionP| P, scope delimitatior{a) P. We use a set semantics of the-calculus. We writ @)« for a set of dis-

of definitions{ X;(#) = P;}; with the provision that each tinct delimitations, neglecting their order, e(gb) = (ba).

—, -,

occurrence of{; in Py is guarded, i.e. behind some prefix. We simply write(ab) for (¢ U b).

We write 0 for the empty sum, and we useto merge The first two lines of Fig. 3 handle the base cases of
sums, thatisd ", ., m. Py + > e, mi Py = > o, mi- Py our semantics. The rulew allows ar prefix to fire. The
whenI N .J = (). Singleton sums are simply writtenP. rulesAsk, Fuse andcHeck simply generate the correspond-

The prefixr is the standard silent operation of CCS. The ing actions. The rulgeL. adds a constraint to the environ-
prefixestell andcheck are those of Concurrent Constraints ment, thus making #ctive Active constraints can then sig-
(CC) [35]. Atell w augments the context with the (negation- nal their presence through tloenstrrule: each constraint
free) formulau. By Theorem 1, the context will always be generates its own singleton. A sum of guarded processes
consistent. Acheck ¢ checks ifc is consistent with the con- " 7. P can instead signal that it iota constraint, by gen-
text. The prefixaskz c generalizes the prefiask ¢ from CC: erating the empty set of constraints througtesSum.
actually, they are equivalent wheh= (). An askz c stops The rulessum, Der (in the third line) are quite standard:

a process until formula can be deduced from the context. they handle external choice and (possibly recursive) defini
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Figure 1. The transition system for the contract calculus (symmetric rules for | are omitted).

tions, respectively. The rulesL, oren handle delimitation.
As usual, wheru is not mentioned in an action, we can
propagate the action across a delimitat{@n using Det.
The ruleoren instead allows for scope extrusion. Note that

fined in a while (Def. 7). When this happens, a silent ac-
tion 7 is generated, the delimitatidmma) is brought back
to the process level, and is applied to the residual pro-

cessP’. Apart from generating a fresh name, another key

oren has no side conditions: the checks needed for scopedifference w.r.t.CLoseAsk is that the set of variables to be

extrusion are handled by threr* rules.

The next two lines of rules handle parallel composition.
The ruleParConsTr merges the sets of constraints adver-
tised by two parallel processes. The redeAsk allows for
augmenting the constraintsin the tentative actio’ %g‘ ¢
generated by ansk, by also accounting for the set of con-
straints advertised by the parallel process. Similarlytier
rulesparFuse andpParCHeck. The rulerarTau simply prop-
agatesr actions of parallel processes. The&* rules also

instantiated is chosen rather arbitrarily GyoseFuse, while
it is hard-wired in a prefix ircLoseAsk. This is the reason
why crLoseFuse checks local minimal fusion, and not just
deducibility, to further restrict the choice of

Summing up, the LTS given by allows for the gener-
ation of tentative actions farsk andfuse (rulesAsk,Fusg),
which can then be converted t& whenever enough con-
straints are discovered (rule€sose*). Then, ther action
can be propagated towards the top level (mleTau). A

merge the set of delimitations; variable and name capturesPrefix check ¢, instead, cannot be handled in the same fash-

are avoided through the side conditi@ip.

ThecrLose* rules are the crucial ones, since they provide
the mechanism to finalize the actions generatedskyand
fuse. The rulecLoseAsk instantiates the variables(origi-
nally in a prefixaskz c) to a subset of the namé&scollected
so far. This is done through a substitution Whenco is
deducible under the constraint sgtr, a silent actionr is
generated, the delimitatignia) is brought back to the pro-
cess level, and is applied to the residual proceBs. Note
that the restrictior{%) is no longer needed, as all the vari-
ables in¥ have been instantiated lay The rulecLoseFuse
instantiates a subsgbf the variables collected in the action
to a set of names. These names comprise a subséthe
collected ones, plus faeshnamen. The variabler (origi-
nally in a prefixfuse, ¢) is instantiated ta. A transition is
then possible when the substitutien defining the instan-
tiation, makes the formula deducible from the constraint
setC under thdocal minimal fusiorrelationt?, to be de-

ion, since it requires to check the consistency: @fith re-
spect toall the active constraints. To this aim, we use the
reduction relation—, layered over the® relation. The re-
duction— only includes internal moves- (rule TopTau)
and successfutheck moves forcreck). This effectively
discards tentative actions, filtering the unsuccessfusone

Definition 7 (Local Minimal Fusion) We writeC'+7 ¢ iff:

3C'CC : (C'okco N fo’' Co: C'o’ I co’)
A local minimal fusion requires a subsét of C' (local-
ity restriction) such thaf” entailsc whenevew is applied.
Also, we wants to instantiate only those variables actually
involved in the entailment of — i.e. we require that no re-
strictiono”’ of o suffices for the entailment.

To understand the motivations underlying the locality
restriction, note that a substitution may be minimal w.r.t.
a set of constraint€’, yet not minimal for a superset



C D (', as the following example shows. Let= p(z), such fusion. It is easy to check thatis a local minimal
C" = {q(y), q(2) Vs — p(y)} andC = C’' U {s}. To fusion, so{c,, ¢} F7 a(x). The instantiation transforms
obtainC’ - ¢, all the variables:, y, z must be instantiated  fuse, b(y) into ask b(n), fired in the last step.
to the same name. So, this fusion (calti) is minimal. In- ) ) o
stead, to obtail” - ¢, we can use another substitutiog, Example 5 (Unfair handshaking) To get further insights
which fusesz with y and neglects, because the premise N the r_ole played by contraptual implication, consider an
q(2) Vs can now be discharged throughSo, in this case  alternative handshaking, which makes NO use-of
1 is.no.tminimal, sincery C o1. This p.henomer]on could, Alice' = (z) (teII a(x). fuse, b(z). lendAirplane)
in principle, lead to unexpected behaviour. For instarete, | , ,

Bob' = (y) (tellb(y). fuse, a(y). lendBike)

/

P =(2)(y)(z)(fusez . | 1) | s Since the handshaking is still performeel,= Alice'| Bob’

Q= (z)(y)(2)(fuse; c.R | R’ | s) behaves a®> = Alice| Bob in Ex. 4. YetP and P’ behave
whereR’ is the parallel composition of the constraiiits quite differently in the presence of a third kid. Let:
Let us d_ro_p for a _While the locality r_estriction. Thgn, in Carl = (2) (tellc(2). fuse, a(=). lendCar)
P two minimal fusions would be applicable, depending on
CLoseFuse being used at the top-lever) or not (;). In-  The system? | Carl could lead to the execution of
stead, inQ only o5 would be possible. This clearly clashes lendCar, since Carl can receive (throughse) the promise
with our intuition thatP and@ should be equivalent, since a(z) from Alice’. However,Alice’ will be stuck waiting for
Q is obtained fromP through a scope extrusion. The local- a bike, so she will never respect her promise, and Carl will
ity restriction allows for recovering such equality. Indee  never obtain the expected airplane. In the systemCarl,
o1 is minimal forC’ C C, so it is also applicable fap. instead, Carl will not lend his car in vain. Hifuse will

The consequence of locality is that inspecting any set of be stuck, because the contract of Alice now requires a bike,

(locally) known contracts is enough to decide if a set of con- and Carl does not provide it.

tracts leads to an agreement — it is not necessary to (glob-E le 6 (Principals) Consid i ket wh
ally) explore the whole system. To a local observer, fusing xample 6 (Principals) Consider an online market, where

x,y, 2z may appear minimal. To a more informed observer, _buyers and sellers trade items. The contract of a buyer

the same fusion may appear non-minimal (the minimal one is to pay for an item, provided that some (still unknown)
fusingz, ). Both fusion are allowed by our semantics sellerxzs promises to send it; dually, the contract of a seller
e ' ng is to send an item, provided that some buygrmpays.

Example 4 (Handshaking) Recall from Sect. 1:
Alice = (z) (tellb(z) — a(x). fuse, a(z). lendAirplane)
Bob = (y) (tella(y) — b(y). fuse, b(y). lendBike)

cp =ng says ((zs says send(z)) — pay(z))

cs = ns says ((yp says pay(y)) — send(y))

A possible trace oP = Alice | Bob is the following: A buyer first issues her contraei;, then waits until dis-
L2 ‘ covering she has to pay, and eventually proceeds with the
P =" (z) (b(x) — a(z) | fuse, a(z). lendAirplane) | processB’. At this point, the buyer may either refuse to
(v) (a(y) — b(y) | fuse, b(y). lendBike) pay (processVoPay), or actually pay the item, by issuing
r b lendAirol . apaid(z). After the item has been paid, the buyer may wait
= (n) (b(n) — a(n) | lendAirplanc{/s} | for the item to be sent or open a dispute with the seller.
a(n) — b(n) | ask b(n). lendBike{"/y})
. B= tell cp. fuse, .B
5 (n) (b(n) — a(n) | lendAirplane{n/=} | (#)(zs)(np) (tellcp. fuse, (np says pay(v)). )

‘ B’ = 1.NoPay + 7.tell (np says paid(x)). B”
a(n) = b(n) | lendBike{"/s}) B" = ask (zg says sent(z)) + 7. tell (np says dispute(z))

In the first two steps we fire the prefixedl b(z) — a(z)

andtella(y) — b(y) throughTeLL, PaRTAu, DEL. The third The behaviour of the sellers is dual.

step is the crucial one. The prefixe, a(x) is fired through

Fuse. ThroughConsTr, ParFusE, we discover the active con- S = (¥)(ys)(ns) (tellcs. fuse, (ns says send(y)). S')
straintc, = b(x) — a(z). We then userento obtainthe S’ = 7.NoSend + 7.tell (ns says sent(y)). S’

action (z){c,} F£" a(x) for Alice. For Bob, we useonsTr 8" = ask (yp says pay(y)) + 7. tell (ng says dispute(y))

to discoverc, = a(y) — b(y), which we merge with the

empty set of constraints obtained throughesum; we then An handshaking is reached throughoseFuse. The fusion
useorento get(y){cy }. At the top level, we then apphyr- iso = {m/z,m/y, ns/xs, mB/ys}, wherem is a fresh name.
Fuse to deduce(z y){c,, e} FL a(x). Finally, CLoseFuse To automatically resolve disputes, a judgean enter a
fusesz andy to the fresh name. Leto = {7/z,7/y} be session initiated between a buyer and a seller, providet tha



a dispute has been opened, and either the obligatjaiys ~ seems to be hard, e.g. [31] shows the impossibility of devis-

or send have been inferred. This is done through thk; ing, in some lattice-based models, a sound and complete set
primitive, whereZ = {z,zs,yp}. This binds the variable  of compositional rules for circular assume-guarantee.

z to the session identifiern,, x5 to the actual name of the Our research seems also related to foundational research
seller (us), andyp to the actual name of the buyer £). on authorization logics for distributed systems [1, 21,.30]

A crucial difference is that, while authorizations logice a
focussed on deciding, given a bunch of logical authorizatio
check ~(yp says paid(z)). jail(yz) assertionsif a principal is allowed to perform some action,

| askz (x5 says send(z) A yp says dispute(z)). in our contract logic we are also concerned with discovering
whatthat principal has to promise in return.

In our model of contracts we have abstracted from most
If the obligation pay(z) is found, but the item has not of the implementation issues. Forinstance, in insecure env
been actually paid then the buyer is convicted (modelled ronments populated by attackers, the operation of exchang-

J = (@) (askz (yp says pay(z) A xg says dispute(z)).

check —(zg says sent(z)). jail(zs))

by jail(ys), not further detailed). Similarly, if the obli- ing contracts requires particular care. This is relatedéo t
gationsend(z) has not been supported by a corresponding problem of establishingommon knowledgia distributed
sent(z), then the seller is convicted. systems [26]. A trusted third party might then be in order to

make the contract exchange fair. We expect to apply stan-
Encodings. We have studied the expressive power of our dard techniques for guaranteeing non-repudation [28, 39,
contract calculus by encoding several concurrency idioms,fair exchange [4], and contract signing [15, 27]. Note that
among which semaphores, Linda [23], thecalculus and  our logic works at a higher abstraction level than the pro-

graph rewriting. See [5] for all the details. tocol level, by focussing on how the exchanged messages
lead to an handshaking between the parties.
4 Related Work Contracts are modelled as processes in [12, 13], to spec-

ify the interaction behaviour of clients and services. A&t

The complexity of real-world scenarios, where several contract complies with a service contract if any possibie in
concepts like principals, contracts, authorizationsjedyt  teraction will always succeed. The crux is how to define
delegation, mandates, regulatiorss. are inextricably in- (and decide) a subcontract relation, that allows for safely
termingled, have led to a steady flourishing of new logics Substituting services without affecting the compliancéwi
over the years. These take inspiration and extend e.g. clastheir clients. Our contracts could be seen as a declarative
sical [17], modal [16], deontic [34, 22], default [24] and underspecified description of which behavioural contracts
defeasible logics [25]. We think none of these logics, in- areé an implementation. Behavioural contracts seem more
cluding our PCL, capturesll the facets of contracts. Each rigid than ours, as they precisely fix the order in which the
of these logics is designed to represent some particular asactions must be performed. Even though in some cases
pect of contracts, e.g. obligations, permissions and prohi  this may be desirable, many real-world contracts allow for a
tions in deontic logics, violation of contracts in defautida ~ more liberal way of constraining the involved parties (e.g.
defeasible logics, and agreement in our contract logic. We "l will pay before the deadline”). While the crucial notion
argue that, since these aspects are orthogonal, it is p@ssib in [12] is compatibility (which results in a yes/no output),
to extend PCL with features from some of these logics. we focus on the inferring thebligationsthat arise from a

The motivations underlying our logic seem related to Set of contracts. This provides a fine-grained quantificatio
those introduced in [3] to compose assume-guarantee specof the reached agreement, e.g. we may identify who is re-
ifications [2]. The idea is that a system will give some guar- Sponsible of a contract violation.
antee); about its behaviour, provided that the environment ~ Negotiation and service-level agreement are dealt with
it operates within will behave according to some assumptionin cc-pi [10], a calculus combining features from concur-
M, andvice versaThis is rendered in [3] as the judgment rent constraints and name passing. As in #healculus,
(M — M) A (M3 — M) = My A Ms. However, since  synchronization is channel-based: it only happens between
— is the usual intuitionistic implication, this judgment no  two processes sharing a name. Synchronization fuses two
valid in IPC) only holds in particular models, where e.g. names, similarly to the fusion calculus and ours. A main
My, My must be interpreted as safety properties. Our ap- difference between cc-pi and our calculus is that in cc-pi
proach is different: we make the above judgement valid only two parties may simultaneously reach an agreement,
by using— instead of—. We then develop a decidable while our fuse allows for simultaneous multiparty agree-
proof theory (exploited to design our calculus of contract- ments. Also, in our calculus the parties involved in an agree
ing processes) while abstracting from the specific models.ment do not have to share a pre-agreed name. This is useful
Actually, finding sound and complete models for contracts for modelling scenarios where a contract can be accepted



by any party meeting the required terms (see e.g. Ex. 6).  [15] V. Cortier, R. Kisters, and B. Warinschi. A cryptographic
Our contracts could be exploited to enhance the compen- model for_branching time security properties — the case of
sation mechanism of long-running transactions [7, 8, 11]. contract signing protocols. IRroc. ESORIC32007.
There, a long transaction is partitioned into a sequence of [16] tA. DtaSK?'OpU'” anol'ﬁT- Mag’é‘)‘(];“-zogolwards electronic con-
smaller ones, each one associated witbapensationto ract periormance. IRroc. e o
be run upon failures of the standard execution [20]. While [17] H. Davulcu, M. Kifer, and 1. Ramakrishnan. CTR-S: A logic

. . . . . for specifying contracts in semantic web servicesPiac.
in long-running transactions clients have little or no coht WWW 2004

on the compensations (they are specified by the designer) 18] H. DeYoung, D. Garg, and F. Pfenning. An authorization
in our approach clients can use contracts to select those ser logic with explicit time. InProc. CSE 2008.

vices offering the desired compensation. In [9], cc-piis ex [19] M. Fairtiough and M. Mendler. Propositional lax logim-
tended with rules for handling transactions. This gives to formation and Computatiqri37(1):1-33, 1997.

the client more control on the choice of compensations. The [20] H. Garcia-Molina and K. Salem. Sagas. StGMOD Con-

differences w.r.t. our calculus noted above still apply.
The reputationof the principal issuing a contract could
be influential in deciding whether accepting such contract o

not. Reputation systems which evaluate the past behaviour
of principals, e.g. [29] can then be used to make our con-
tracts more expressive. Time is another feature that may

arise while modelling contracts. Temporal extensions of ou
logics, e.qg. like [18], will allow to check whether a promise
is violated in a given trace (e.g. the deadline passed).
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A Selected Cases for Cut elimination

Casezero / PREPOST

ID

Labtg .0 D2
Do D1 D2 DO T,qkp—gq L.q.p—>aqkb -
'fg Spo LiPraabp Tip—agqbb, o0 - I'kyq T,qFb cur
IFp—>g Lp>qha=b cutT — LEb ZERO
'Fa—b I'Fa—b
Casezero / Fix
DO D1 D2 T.gFq~ Jero D2
'tqg , oo Lip>agabp Tip—>gqbac, DO T,gkp—gq Lgp—qgta_
T'kFp—gq I''p—qta cut :>FFq I'gFa cuT
I'ka I'ta
CasePrePosT/ Fix, assuming(p — ¢q) € T’
DO D1 D2 D3
Tatkp F’q}_bPREPOST I'a—>brka F,a—»b,bi—rFlX Dy Dy
I'Fa—b I'ia—»bkr cuT :>F,r#p RqFrFlX
Flp—>qkr TFr
D0+ D1+
Iyr,alkp Iyr,gkb D2
PREP -
T.rFa—b REFOST Tra—bFa_ DOt
whereDy = iria Uirabp o;
Irkp
D0+ D1+
I g,b,alp T',qbgqgtb D3+
PREP
D1 T.q.bFa—b REFOST Tgba—bbr_
A Igkb Iyg,bF1r
and D; = — i
1 F,ql—r CuUT
CaseFix / any rule, assuming(p — ¢q) € T
D1+ DO+
Do D1 . Lb,qta F,b,q,al—pCUT D1 D2+
Takp F,q#aFlX D2 . T,b,ptp T.b,qkp Fix Tqka F’q’anCUT
T'Fa Labb T,bFp T,qFb Ei
C(p—>q) kb kb

Our cut metric is the following. We associate to each cut thgght (p, h(Dy), h(D1)) wherep is the cut formula, and(D;)
denotes the height of the subderivatiby. The stuctural ordering of formulae and the usual one onrakstunduce the
lexicographical ordering of weights. This is a well-fouddardering, and each reduction above replaces a cutligiker
ones, only.
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