
Automated Transformation of SWRL Rules into Multiple-Choice Questions

Konstantinos Zoumpatianos 1 and Andreas Papasalouros 2 and Konstantinos Kotis 1
1 Department of Information and Communication Systems Engineering

2 Department of Mathematics
University of the Aegean

Karlovassi, 83200 Samos, Greece

Abstract

Various strategies and techniques have been proposed for the
generation of questions/answers tests in Intelligent Tutoring
Systems by using OWL (Web Ontology Language) ontolo-
gies. Currently there have been no known methods to utilize
SWRL rules for this task. This paper presents a system and
a set of strategies that can be used in order to automatically
generate multiple choice questions from SWRL rules. The
aim of the proposed framework is to support further research
in the area and to be a testbed for the development of more
advanced assessment techniques.

Introduction

The use of structured knowledge in the form of domain-
specific ontologies, rules and instances in order to auto-
matically generate multiple-choice questions (MCQ) would
enable Intelligent Tutoring Systems (ITS) to utilize pre-
existing knowledge bases for the assessment of learners’
knowledge and skills.

There have been various strategies and techniques pro-
posed in literature that argued for the use of OWL (Web On-
tology Language) ontologies for the generation of questions
and answers (Papasalouros, Kanaris, and Kotis 2008; Ko-
tis, Papasalouros, and Nikitakos 2009; Holohan et al. 2006;
Papasalouros, Kotis, and Nikitakos 2010). Furthermore, the
potential of extending these strategies for SWRL (Semantic
Web Rule Language) rule specifications has been indicated
by (Papasalouros, Kotis, and Nikitakos 2010). Nonetheless,
there have been no known implementations proposed to this
time capable to support the generation of questions and an-
swers from SWRL rules. The SWRL is a proposal for a
Semantic Web Rule Language based on the combination of
OWL with RuleML, specifically OWL DL and OWL Lite
with the Unary/Binary Datalog RuleML sub-language.

This paper presents a system that converts SWRL rules
into natural language multiple-choice questions as well as
techniques for generating the appropriate distracting an-
swers. It has been designed and implemented as an extensi-
ble framework supporting new question and answer forma-
tion strategies. Currently, this system is able to form ques-
tions for data type properties (e.g. price(x,5)), individual

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

type properties (e.g. hasFriend(x,y)) and class properties
(e.g. Engineer(x)), as well as generate distracting answers
for the two last.

Related work

Mitkov, Ha, and Karamanis (2006) describe a method for
generating multiple choice questions from textbook mate-
rial. In order to generate stems (questions) and the cor-
rect answer, text is parsed based on specific patterns. Then,
Wordnet ontology is used in order to generate plausible dis-
tractors based on subsumption relationships between terms.
Holohan et al. (2005) propose the use of subsumption rela-
tionships between classes, as well as class-instance relation-
ships defined in domain ontologies in order to generate mul-
tiple choice questions, as part of personalized learning ob-
jects. The system they developed, OntoWare, was extended
(Holohan et al. 2006) so as to generate tests for problem
solving skills in the particular domain. Cubric and Tosic
(2010) propose a method for generation of MCQ questions
based on a combination of annotations on ontology elements
and question templates. They propose strategies that uti-
lize these annotations, besides the semantics of the ontolog-
ical descriptions. By the use of templates they can generate
questions that can assess learning objectives according to the
Bloom Taxonomy. Papasalouros, Kanaris, and Kotis (2008)
propose a set of strategies for generating questions exploit-
ing the semantics of OWL language. These strategies only
partially deal with the syntactic correctness of the produced
questions, by using simple Natural Language Generation
techniques. Cubric and Tosic (2010) have implemented the
aforementioned strategies as a Protegé plug-in, also leverag-
ing the problems of syntactical correctness. Soldatova and
Mizoguchi (2007) describe an ontology-based method for
test generation. Three ontologies are used for the follow-
ing purposes: a test ontology specifying the items of each
test, a student model and, finally, a set of rules for test cre-
ation. Focus is given to the determination of test difficulty
for each particular student. Tests are automatically gener-
ated by using a domain model containing facts, events and
terms(Soldatova and Mizoguchi 2003). While this method
requires the adoption of a specific predefined ontology, our
approach utilizes only the semantics of OWL and SWRL,
regardless of a particular domain.

None of the above-mentioned methods utilizes SWRL

570

Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference



rules in question/answer generation. We conjecture that the
expressiveness of these rules improves the quality of gener-
ated questions, compared with questions generated by OWL
rules, since they can effectively test knowledge of relation-
ships between concepts and individuals, thus assessing more
deep levels of student understanding.

Three workshops have been dedicated to the problem of
question generation solely from given texts or text corpora
1 where a number of solution approaches have been pre-
sented based on Natural Language Processing techniques. A
widely used method is based on the application of rules for
transforming selected clauses or sentences from declarative
to interrogative form. These rules define certain syntactical
tree patterns and the application of appropriate generation
templates which apply morphological and syntactical trans-
formations to the inupt clauses. In order to improve gener-
ated questions, certain forms of pre-processing are applied
such as anaphora resolution, complex sentence splitting, key
concept identification and name entity recognition. Besides
syntax-based techniques, such as the above, approaches that
utilized sentence semantics have been applied, such as Mini-
mal Recursion Semantics (Yao and Zhang 2010) and Seman-
tic Role Labeling (Pal et al. 2010). While our approach is not
related to text processing, it can utilize NLP techniques such
as the above for ontology and rules learning and population
from text. These ontologies and rules can then be used, as
an intermediate language, for question generation.

The Semantic Web Rule Language

SWRL rules are in the form antecedent =⇒ consequent,
which is interpreted so that if the antecedent holds, then
the consequent must also hold. Both the antecedent and
the consequent parts are conjunctions of atoms. Atoms are
unary or binary predicates, that is, class or property predi-
cates, respectively. These predicates contain variables, in-
dividuals or data literals. Variables can be placed in both
the antecedent and the consequent parts and they represent
both individuals and data. A restriction called “safety”,
imposes that only variables present in the antecedent part
can be placed in the consequent part. An abstract nota-
tion will be used for the rest of the paper to refer to in-
dividual variables as I-variable(variable name) and data
variables as d-variable(variable name). Being an exten-
sion to the OWL-DL ontology description language, SWRL
supports Classes, Sub-Classes, Class Equivalences, Disjoint
Classes and Data Types as well as Data-valued Properties
and Individual-valued Properties. Thus, all of those axioms
and facts can be used to describe each variable present in a
rule.

System description

The system consists of three layers. The first one is responsi-
ble for parsing rule files and converting them into an internal
representation. Specifically a rule, which is originally writ-
ten in the form of conjunctions of atoms, becomes a set of
objects. One object for each variable, which in their turn

1http://www.questiongeneration.org/

contain all the atoms specific to this variable. The second
layer is responsible for generating a textual representation
for each variable. Those representations are then combined
to form questions. The last layer is the one responsible for
the generation of the appropriate distracting answers. It uses
the semantics of OWL-DL to discover objects that are re-
lated to the correct one.

Data representation

For the sake of generality and convenience, an internal rep-
resentation of rules has been developed. This not only al-
lows the system to remain relatively input agnostic and thus
extensible, but most importantly, it represents the main phi-
losophy behind our approach. A set of atoms that form
a rule are converted into a set of variables. Specifically,
instead of describing a conjunction of property and class
predicates, the variables themselves and the relations be-
tween them are described. The parser generates a set of
rule objects, one for each rule in the file. These ob-
jects contain sets of variable objects, one for each variable
present in the rule. As an example, for each rule in an
SWRL document a new set R = {Vi, . . . ,Vn} will be ini-
tialized, containing n variable objects V i = {Ai,Ci}, where
Ai = {Pi1 , . . . ,Pik} and Ci = {Qi1 , . . . ,Qil} are the sets of
predicates, either class or properties, related to this spe-
cific variable. Ai contains the predicates that belong to
the antecedent part of the rule and Ci contains the pred-
icates found in the consequent part of the rule. Basi-
cally, it is the set of all the properties in a rule, where
each variable Vi is the first argument of a predicate (e.g.
has(I-variable(Vi),something) or Class(I-variable(Vi)) but
not has(something, I-variable(Vi))).

The properties Pik ∈ {DataTypePropery,
Ob jectProperty,Class} can be either Data-valued Prop-
erties (properties for which the value is a data literal),
Individual-valued Properties (properties for which the value
is an instance) or Data-range Properties (properties for
which the value is a class).

Each different property type contains a PropertyPredicate
value (the name of the class, or the name of the relation) and
one or more arguments.

Ob jectProperty = {Arg1,PropertyPredicate,Arg2}
DataTypeProperty = {Arg1,PropertyPredicate,Arg2}
Class{Arg1,PropertyPredicate

Example For example, given the following rule:

Person(?x)∧Holds(?x,?y)∧Diploma(?y)∧
isIssuedBy(?y,?z)∧EngineeringSchool(?z)⇒ Engineer(?x).

A rule object R1 = {Vx,Vy,Vz} will be instantiated with
three variable elements, one for each variable.

A graphic representation of the data structures generated
can be seen in figure 1. Each variable object contains the set
of properties that concern this specific variable.

571



X Y

ZClass
Person

Class
Engineer

Class
Diploma

Holds

isIssuedBy

Class
Engineering
School

Consequent Antecedent

Figure 1: Data structure

V x = {Ax,Ci}
Ax = {Class(x,Person), IndividualProperty(x,Holds,y)}
Cx = {Class(Engineer,x)}
Vy = {Ay,Cy}
Ay = {Class(y,Diploma),Ob jectProperty(y, isIssuedBy,z)}
Vz = {Az,Cz}
Az = {Class(z,EngineeringSchool)}

At the same time there are formed relationships between
the objects which are connected via an Individual-valued
Property (figure 1). In this specific example, the object that
represents I-variable(x) is connected to the object that repre-
sents I-variable(y) with the property Holds and this is con-
nected to the object that represents I-variable(z) through the
property isIssuedBy.

It comes natural that by implementing an algorithm able
to express each variable object into natural language and
then the relations between them we are able to describe the
concept on the consequent part. In this example we would
have the following sentence:

(a Person that holds (a Diploma that is issued by

(an Engineering School)I−variable(z))I−variable(y))I−variable(x)

Variable verbalization strategies

The basic strategies implemented use a simple pattern and
a set of sub-patterns to achieve this task. The basic pattern
is based in a simple procedure which expresses the classes
where each variable belongs to on the first part of the sen-
tence, followed by the word “that” and then all the prop-
erties that connect this variable to other objects and values
are expressed sequentially and concatenated appropriately
(Algorithm 1). A possible extension of the aforementioned
method in this stage, would be the use of WordNet to cor-
rectly decide the pronoun based on the class name(s) and not
the use of the word “that” by default.

Each different property type can be expressed using a
variety of strategies. In the default strategy the follow-
ing simple methods are used. For Data Type Properties
the property’s predicate is verbalized with a set of standard
string processing algorithms and added to the value itself.
For Individual-valued Properties (Algorithm 1, ExpressIn-
divProp procedure) the predicate is verbalized and an Ex-
press procedure is recursively called in order to verbalize
the related variable or call a procedure that verbalizes an

instance. While with ReferenceTo the way the algorithm
should refer to an element is decided. For example, an el-
ement which has already been expressed previously in the
sentence must be referred to as “the element” and an ele-
ment that has not been seen before must be called as “an
element”. One which has the same class as other elements,
that have been already expressed before, must be called as “a
second”, “a third” and so on. Additionally, it should be re-
ferred as “the second”, “the third”, if it is already expressed
earlier in the sentence. To achieve this, a stack has been im-
plemented where all expressed elements are pushed and then
used to decide the correct way of reference to an element.

Algorithm 1 Expressing variables and properties
procedure EXPRESS(Variable)

VarClasses ←Variable.getClasses()
VarProperties ←Variable.getProperties()
expression ← ExpressClasses(VarClasses) + ”that” +

ExpressProperties(VarProperties)
return expression

end procedure

procedure EXPRESSPROPERTIES(VarProps)
e ← ””
i ← 0
while i < size o f (VarProps) do

if is answer(VarProps[i]) then
continue � this property is the answer!

end if
if is data type(VarProps[i]) then

e ← concat(e,ExpressDataProp(VarProps[i]))
else

e ← concat(e,ExpressIndivProp(VarProps[i]))
end if

end while
return e

end procedure

procedure EXPRESSINDIVPROP(prop)
pred ← prop.getPredicate()
arg ← prop.getSecondArgument()
if isInstance(arg) then

e ← Verbalize(pred) + Re f erenceTo(arg) +
ExpressInstance(arg)

else
e ← Verbalize(pred) + Re f erenceTo(arg) +

Express(arg)
end if
return e

end procedure

Question expression strategies

The system is implemented in such a way that it fully sup-
ports the easy addition of new strategies. As goes with the
variable verbalization strategies, while there can be many
different strategies available to express questions, only one
for each type has been implemented.

In general, there are three basic question categories one
can generate from SWRL rules.

572



Data-range questions Data-range property questions can
mainly be of two types. Being easier to describe with an
example, we are going to use the same one as in the previous
sections. In the sentences bellow the underlined part refers
to the antecedent while the not underlined one refer to the
consequent part. Additionally, class names are marked with
bold letters.

• An engineer is a person that holds a diploma issued
by an engineering school

1. What is a(n) person that holds a diploma issued by an
engineering school.

2. An engineer is a person that holds a issued by
an engineering school.

It is obvious that in the first type a question is asked, while in
the second one some facts are simply removed and the test
taker is asked to “fill in” the blanks. The prototype strategies
focus only on the first method since the second one was con-
sidered to be more trivial to implement. Furthermore, there
is another major difference between those two questions. In
both of them Class questions are asked, but in the first one
the name of the missing class is part of the consequent, while
in the second one it belongs to the antecedent part. In the
current prototype, only classes and properties that belong to
the consequent part are asked from the quiz taker and only
parts that belong to the antecedent part are expressed. This
limitation can be bypassed with a small modification on the
original rule. If some elements from the antecedent part are
moved to the consequent part and the reverse the following
rule can be produced.

Person(?x)∧Engineer(?x)∧Holds(?x,?y)∧
isIssuedBy(?y,?z)∧EngineeringSchool(?z)⇒ Diploma(?y).

Which in its turn can be simplified to exclude the class Per-
son, since it is covered by its sub-class Engineer. Now the
sentence becomes the following.

1. What is a(n) object issued by an engineering school, when
an engineer holds this object?

Notice that the part of the sentence that follows the comma
is introduced by a post-processing step that is going to be
described later. The basic pattern that we use to express
this kind of questions is simply the following: Question =
“What is a(n)”+ express(variable).

Example

Person(x)∧Diploma(y)∧Holds(x,y)∧
hasECT S(y,500) ⇒ Engineer(x)

The sentence above, would become: “What is a(n) (expres-

sion of x: person which holds a (expression of y: diploma which
has ects 500))”

Individual-valued properties questions The algorithm
for expressing questions based on individual properties is
the most complex one and is described using the following
pattern.

Question = ”What is the relation between a(n)”+
Express(prop.getFirstArgument())+ ”and”+
Re f erenceTo(prop.getSecondArgument()+

Express(prop.getSecondArgument())
Example

Engineer(x)∧Holds(x,y)∧Transcript(y)∧
hasDurationO fYears(y,5)

=⇒ hasEngineeringDiploma(x,y)

The above rule would be expressed as: “What is the
relation between an (expression of x: engineer that holds a
(expression of y: transcript which has duration of years 5) and
this (expression of y: transcript that has a duration of years 5)) ”

An apparent problem here, is the re-expression of element
y. This is stopped by using a similar to the ReferenceTo
function, which for already expressed elements, would
restrict the expression of this element just to the class name.

Data-valued properties questions Expressing Data-
valued properties can be a daunting task, so a simple and
hopefully meaningful strategy has been used. It is described
in the following pattern.

Question = ”What is the” +
Verbalize(prop.getPredicate()) + ”value f or” +
Express(prop.getFirstArgument())

Example

Engineer(x)∧Diploma(y)∧Holds(x,y)⇒ ECT S(y,500)

The rule above would become “What is the ects value for
(expression of y: a diploma) ”

An apparent problem here, is that the engineer is not de-
scribed at all. This is solved by this strategy using a post-
processing step mentioned below, its job is to expresses all
unexpressed elements.

Post processing step It is apparent that some times ele-
ments are not described at all. This is because they are not
linked directly to the target element but rather in an inverse
fashion. This is demonstrated in Figure 2, where while in
both figures we ask the quiz taker to describe an element of
the consequent part, in Figure 2b the variable object Y, does
not link to X but is linked by it. For those elements that are
left out, they are expressed at the end of the sentence using
the following pattern.

PostProcess(question) = Question + ”when” +
ExpressAllUnexpressedElements()

By using this technique the problem apparent in a previ-
ous example is solved, as the question is now converted to:
“What is the ects value for (a diploma) when (an engineer
holds this diploma)?”

573



�

�

�����
�������

��	

	



�����
�������

����

�
�
�
���

�
��
�

�
�
����

��
�

���������������������������������⇒��������	

�

�

�

�����
������

�����
�������

�����
�������

����

�
�
�
���

�
��
�

�
�
����

��
�

�����������������������������������⇒������������

� �

Figure 2: Backward linking

Answer generation algorithms

Answers can be generated using a variety of strategies, most
of which are based on the OWL semantics. Some example
strategies that have been implemented in the prototype are
presented here.
• For Data-range questions, the sub-classes of the correct

class’s super-class are displayed
• For Individual-valued Property questions two strategies

have been developed.

– All the sub-properties of the correct property’s super-
property are presented.

– All the properties with the same domain and range are
presented.

• For Data-valued properties no strategies have been devel-
oped due to their increased complexity, but some future
strategies could be the following.

– For each different data type property present distracting
values.

∗ Based on a mathematical series which contains this
value (numerical data types).

∗ Using WordNet for textual data.
∗ Randomly display values that belong to this DataType

and exist in the ontology file.

Implementation

A framework that supports the ideas presented in this paper
has been developed in Java 1.6 using the Jena framework as
a portable library. The addition of new question and answer
generation strategies is fully supported by the implementa-
tion of the appropriate interfaces. Additionally, there have
been efforts to make the library remain as agnostic as pos-
sible in regards to the format of the input files. Thus, input
file parsers can also be enhanced by implementing the ap-
propriate interfaces and incorporating them into the system.
Finally, a graphical user interface was added that presents
the multiple choice questions to the test taker as an interac-
tive quiz and enables the user to choose the correct answer.
At the end of the test, the user is informed about the total
score of correct answers he/she achieved.

Figure 3: Graphical user interface

Evaluation

The system has been tested with three SWRL documents.
The metrics of these documents are described in Table 1.

Table 1: Ontologies used for evaluation

Domain Classes Properties Individuals Rules

Musical Instruments 14 8 0 1
Family 65 28 29 14

Oil Pollution 89 31 33 5

In Table 2 the total number of generated questions are dis-
played. Because of the way the presented algorithm works,
the amount of questions generated highly depends on the
amount of rules available in the ontology file, as well as the
number of atoms available in the consequent part (which is
always one atom per rule in the current experiments).

In Table 3 the average number of answers for each ques-
tion is displayed for two different Individual-valued Prop-
erty question/answer generation strategies. The first one
displays the sub-properties of the correct property’s super-
property as distracting answers. While the second strategy
”relaxes” this heuristic by producing a greater number of
possible answers. This is done by displaying all properties
with the same domain and range. Obviously, as can also
be seen in Table 3, there was a significant increase in the
number of answers using this ”more relaxed” strategy, es-
pecially in domains where many Individual-valued Property
questions had been generated. For example, a greater aver-
age number of possible answers can be seen for the Fam-
ily domain, since the vast majority of properties involved
in it are Individual-valued properties (Family relationships)
and all of the 14 questions generated were Individual-valued
Property ones. This increase cannot be seen in the Musi-
cal Instruments though, and this is because it only provides
Data-range questions.

Table 2: Questions generated per ontology

Domain Questions (Class, Individual, Data) Variables/Rule

Musical Instruments 1 (1, 0, 0) 1
Family 12 (0, 12, 0) 1.4

Oil Pollution 4 (2, 1, 1) 1.85

Samples of questions generated are given below.

• Super property’s sub-properties strategy

574



Table 3: Average answers per question for each method

Domain Super property’s Same domain
sub-properties and range

Musical Instruments 3 3
Family 1.5 4.8

Oil Pollution 1 1

– Musical Instruments: What is a(n) stringed musical
instrument that has number of strings 6?
a. Guitar, b. Ukulele, c. Banjo

– Family: What is the relation between a(n) person that
has parent a(n) woman and this woman?
a. has mother, b. has father

• Properties with same domain and range strategy

– Family ontology: What is the relation between a(n)
person that has parent a(n) 2nd person that has consort
a(n) 3rd person and this 3rd person?
a. has parent, b. has sibling, c. has child, d. has consort

In the above examples we see that syntactic correctness
is not always achieved. For example, property has parent
should be manually replaced by parent in order to provide a
syntactically correct answer.

The above question items samples also demonstrate the
improvement in question semantics in comparison with
questions generated by OWL. While the question on musical
instruments could be generated without the use of SWRL, by
appropriately inspecting OWL datatype properties, the ques-
tion about the family ontology utilizes a rule associating bi-
nary predicates (relationships), which would not be possible
by using OWL. Unlike OWL, its successor, OWL 2 (W3C
2009), allows property relationships such as the above in the
form of property chains, a feature which is not investigated
in this research.

Future work

Currently the proposed framework contains prototype strate-
gies and hosts a variety of string processing and Knowl-
edge Engineering algorithms. The enrichment of this algo-
rithm collection will make the development and application
of more complicated algorithms easier, thus, easing the ex-
ploration of the problem of automatic MCQ generation both
from a linguistic as well as from a Knowledge Engineering
perspective.

An evaluation with real users would reveal the practical
usefulness of the method. Furthermore, a detailed compar-
ison of our approach to other MCQ generation techniques,
especially non rule-based methods, is a theme of great inter-
est that is part of our future plans to conduct.

Other areas of future work include the extension of this
framework so that it can provide a set of metrics for the
questions and answers generated. Those metrics could in-
clude measures such as grammatical correctness, question
complexity (number of entities involved), difficulty and oth-
ers. An introduction that would certainly ease the process of
comparing different strategies in terms of question difficulty,
complexity and readability.

References

Boyer, K. E., and Piwek, P., eds. 2010. Proceedings of
QG2010: The Third Workshop on Question Generation.
Cubric, M., and Tosic, M. 2010. Towards automatic gen-
eration of e-assessment using semantic web technologies.
In Proceedings of the 2010 International Computer Assisted
Assessment Conference, Jul 2010. University of Southamp-
ton.
Holohan, E.; Melia, M.; McMullen, D.; and Pahl, C. 2005.
Adaptive courseware generation based on semantic web
technology. In International Workshop on Applications of
Semantic Web Technologies for E-Learning (SW-EL 2005),
29–36.
Holohan, E.; Melia, M.; McMullen, D.; and Pahl, C. 2006.
The generation of e-learning exercise problems from subject
ontologies. In ICALT, 967–969. IEEE Computer Society.
Kotis, K.; Papasalouros, A.; and Nikitakos, N. 2009. Sup-
porting decision making in maritime environmental protec-
tion with a knowledge-based education and awareness ap-
proach. In Kotis, K., ed., Artificial Intelligence Applications
in Environmental Protection Workshop, collocated with 5th
IFIP Conference on Artificial Intelligence Applications and
Innovations 23-25 April, Thessaloniki, Greece.
Mitkov, R.; Ha, L.; and Karamanis, N. 2006. A computer-
aided environment for generating multiple-choice test items.
Natural Language Engineering 12(02):177.
Pal, S.; Mondal, T.; Pakray, P.; Das, D.; and Bandyopad-
hyay, S. 2010. QGSTEC system description – JUQGG: A
rule based approach. In Boyer and Piwek (2010), 76–79.
Papasalouros, A.; Kanaris, K.; and Kotis, K. 2008. Auto-
matic generation of multiple choice questions from domain
ontologies. In Nunes, M. B., and McPherson, M., eds., e-
Learning, 427–434. IADIS.
Papasalouros, A.; Kotis, K.; and Nikitakos, N. 2010. To-
wards an intelligent tutoring system for environmental deci-
sion makers. Environmental Engineering and Management
Journal 9(2):197–204.
Soldatova, L., and Mizoguchi, R. 2003. Ontology of tests.
In Proceedings of Computers and Advanced Technology in
Education, 175–180.
Soldatova, L., and Mizoguchi, R. 2007. Testing and under-
standing by use of an ontology methodology. In Proceedings
of Joint Workshop of Cognition and Learning, 202–205.
W3C. 2009. OWL 2 Web Ontology Language: Doc-
ument Overview. Available at http://www.w3.org/
TR/owl2-overview/.
Yao, X., and Zhang, Y. 2010. Question generation with
minimal recursion semantics. In Boyer and Piwek (2010),
68–75.

575




