
Query Workloads for Data Series Indexes

Kostas Zoumpatianos

University of Trento

zoumpatianos@disi.unitn.it

Yin Lou

⇤

LinkedIn Corporation

ylou@linkedin.com

Themis Palpanas

Paris Descartes University

themis@mi.parisdescartes.fr

Johannes Gehrke

⇤

Microsoft Corporation

johannes@microsoft.com

ABSTRACT
Data series are a prevalent data type that has attracted lots
of interest in recent years. Most of the research has focused
on how to e�ciently support similarity or nearest neighbor
queries over large data series collections (an important data
mining task), and several data series summarization and in-
dexing methods have been proposed in order to solve this
problem. Nevertheless, up to this point very little atten-
tion has been paid to properly evaluating such index struc-
tures, with most previous work relying solely on randomly
selected data series to use as queries (with/without adding
noise). In this work, we show that random workloads are
inherently not suitable for the task at hand and we argue
that there is a need for carefully generating a query work-
load. We define measures that capture the characteristics of
queries, and we propose a method for generating workloads
with the desired properties, that is, e↵ectively evaluating
and comparing data series summarizations and indexes. In
our experimental evaluation, with carefully controlled query
workloads, we shed light on key factors a↵ecting the perfor-
mance of nearest neighbor search in large data series collec-
tions.

Categories and Subject Descriptors
H.2 [Database Management]; H.3.1 [Information Stor-
age and Retrieval]: Content Analysis and Indexing

Keywords
data series; indexing; similarity search; workloads

⇤Work done while at Cornell University. This work was
funded by NSF Grants IIS-0911036 and IIS-1012593, and by
the iAd Project from the National Research Council of Nor-
way. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c� 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2578726.2578744.

1. INTRODUCTION
Data series (ordered sequences of values) appear in many

diverse domains ranging from audio signal [15] and image
data processing [33], to financial [29] and scientific data [14]
analysis, and have gathered the attention of the data man-
agement community for almost two decades [24, 30, 5, 23,
10, 11, 36]. Note that time series are a special case of data
series, where the values are measured over time, but a series
can also be defined over other measures (e.g., mass in Mass
Spectroscopy).
Nearest neighbor queries are of paramount importance in

this context, since they form the basis of virtually every
data mining and analysis task involving data series. How-
ever, such queries become challenging when performed on
very large data series collections [6, 26]. The state-of-the-
art methods for answering nearest neighbor queries mainly
rely on two techniques: data summarization and indexing.
Data series summarization is used to reduce the dimension-
ality of the data [17, 24, 25, 21, 1, 21, 16, 8, 22] so that they
can then be e�ciently indexed [24, 30, 5, 32, 2, 28].
We note that despite the considerable amount of work

on data series indexing [12, 25, 8, 30, 16], no previous study
paid particular attention to the query workloads used for the
evaluation of these indexes. Furthermore, since there exist
no real data series query workloads, all previous work has
used random query workloads (following the same data dis-
tribution as the data series collection). In this case though,
the experimental evaluation does not take into account the
hardness of the queries issued.
Indeed, our experiments demonstrate that in the query

workloads used in the past, the vast majority of the queries
are easy. Therefore, they lead to results that only reveal the
characteristics of the indexes’ performance under examina-
tion for a rather restricted part of the available spectrum of
choices. The intuition is that easy queries are easy for all
indexes, and therefore queries cannot capture well the di↵er-
ences among various summarization and indexing methods
(the same also holds for extremely hard queries as well).
In order to understand how indexes perform for the entire
range of possible queries, we need ways to measure and con-

trol the hardness of the queries in a workload. Being able
to generate large amounts of queries of predefined hardness
will allow us to stress-test the indexes and measure their
relative performance under di↵erent conditions.
In this work, we focus on the study of this problem and

we propose the first principled method for generating query
workloads with controlled characteristics under any situa-
tion, irrespective of the data series summarization used by

the index or the available test dataset.1 To this end, we
investigate and formalize the notion of hardness for a data
series query. This notion captures the amount of e↵ort that
an index would have to undertake in order to answer a given
query, and is based on the properties of the lower bounding
function employed by all data series indexes. Moreover, we
describe a method for generating queries of controlled hard-
ness, by increasing the density of the data around the query’s
true answer in a systematic way.

Intuitively adding more data series around a query’s near-
est neighbor forces an index to fetch more raw data in that
area for calculating the actual distances, which makes a
query “harder”. In this paper, we break down this problem
into three subproblems.

• Determine how large the area should be around the
query’s nearest neighbor (Section 3).

• Determine how many data series to add in that area
(Section 5.2).

• Determine how to add data series (Section 5.3).
The proposed method leads to data series query workloads

that e↵ectively and correctly capture the di↵erences among
various summarization methods and index structures. In ad-
dition, these workloads enable us to study the performance
of various indexes as a function of the amount of data that
have to be touched. Our study shows that queries of in-
creased hardness (when compared to those contained in the
random workloads used in past studies) are better suited for
the task of index performance evaluation.

Evidently, a deep understanding of the behavior of data
series indexes will enable us to further push the boundaries
in this area of research, developing increasingly e�cient and
e↵ective solutions. We argue that this will only become
possible if we can study the performance characteristics of
indexes under varying conditions, and especially under those
conditions that push the indexes to their limits.

Our contributions can be summarized as follows.
• We propose a methodology for characterizing a nearest

neighbor query workload for data series collections, as
well as the set of recommended principles that should
be followed when generating evaluation queries.

• We describe the first nearest neighbor query workload
generator for data series indexes, which is designed
to stress-test the indexes at varying levels of di�culty.
Its e↵ectiveness is independent of the inner-workings of
each index and the characteristics of the test dataset.

• We demonstrate how our workload generator can be
used to produce query workloads, based on both real
and synthetic datasets.

2. PRELIMINARIES
A data series x = [x1, ..., xd] is an ordered list of real

values with length d. In this paper, we also call data series
as points. Given a dataset D = {xi}N1 of N points and a
query set Q = {qi}M1 of M data series, a query workload
W is defined as a tuple (D,Q, k,DIST), where each query
point qi 2 Q is a k nearest neighbors (k-NN) query and
DIST (·, ·) is a distance function. When the context is clear,
we use x

(k) to denote k-th nearest neighbor of a query q.
In this work, we focus on the nearest neighbor query, i.e.,

k = 1, and define MINDIST (q) as DIST (x(1)
, q). How-

ever, our methods can be naturally extended to higher values

1Website: http://disi.unitn.it/~zoumpatianos/edq

Symbol Description

x A data series
q A query data series
D A set of N data series
Q A set of M queries
DIST (x, q) Euclidean distance between x and q

MINDIST (q) Distance between q and its nearest neighbor
L(x, q) Lower bound of DIST (x, q)
ATLB(L,x, q) Atomic tightness of lower bound of L for x, q
TLB(L) Tightness of lower bound of L
µL(q) Minimum e↵ort to answer q using L
N ✏(q) ✏-Near Neighbors of q
↵✏(q) Hardness of q for a given ✏

Table 1: Table of symbols.

of k by employing the distance to the k-th nearest neighbor.
For the rest of this study, we consider the Euclidean dis-
tance DIST (x,y) = kx � yk2, due to its wide application
in the data series domain [5, 30, 32]. Table 1 summarizes
the notations in this paper.

2.1 Data Series Summarization
Since data series are inherently high-dimensional, di↵erent

summarization techniques are used in order to reduce the
total number of dimensions. Popular techniques not only
include well known transforms and decompositions such as
DFT [24, 25, 21, 1], DHWT [21, 16, 8], PCA and SVD [19,
27], but also data series specific data summarization tech-
niques such as SAX [22], PAA [17], APCA [7] and iSAX [30,
5]. We briefly describe the most prominent ones below.
Piecewise Aggregate Approximation (PAA) [17]

approximates a data series by splitting it into equal seg-
ments and calculating the average value for each segment.
Discrete Fourier Transform (DFT) [24, 25, 21, 1]

uses Fourier transforms to convert a data series to the fre-
quency domain and represents it as a list of coe�cients.2

Discrete Haar Wavelet Transform (DHWT) [21,
16, 8] uses Haar wavelets in order to transform a data series
into a list of coe�cients.
Symbolic Aggregate approXimation (SAX) [22] is

built above PAA with the addition that the value space is
also discretized, leading to a symbolic representation with
very small memory requirements.
To use such summarizations and make exact query an-

swering feasible, indexes use lower and upper bounds of the
distances between two data series in the original data space.
These bounds are computed based on the summarizations
of the data series. Throughout our study, we refer to the
lower bounding function of a given summary as function L;
given two summarized data series, L returns a lower bound
of their true distance in the original space.

2.2 Data Series Indexing
Nearest neighbor search can be an intensive task; the

näıve approach requires a full scan of the dataset. Fortu-
nately, lower bounding functions on summarizations along
with indexing make it possible to significantly prune the
search space.
Indexes are built by hierarchically organizing data series

in one or many levels of aggregation. At each level multi-
ple groups of data series are summarized under a common
representation. This is illustrated in Figure 1. Data series
indexes that support exact nearest neighbor search can be
divided into three broad categories as follows.

2In this work, we use the well known FFT algorithm.

Data-Series
Index

AnswerData not touched
during query answering

Data touched
during query answering

Indexed
data

Query

Figure 1: An index structure built above a set of
data series, pruning the search space for a query.

Summarization & spatial access method. The first
category involves the use of a summarization technique and
a (general) spatial access method. Previous work has pro-
posed the use of R-Trees with summarizations like DFT [1,
12, 24, 25], DHWT [8] and Piecewise Linear Approximation
(PLA) [9].

Data series specific summarization & index. The
second category involves the use of a summarization method
specific to data series, and a specialized index that is built
on top of it. Such indexes include TS-Tree [2] (based on a
symbolic summarization), DS-Tree [32] (based on APCA),
ADS [35] and iSAX index [30, 5, 6] (built on an indexable
version of SAX), and SFA index [28] (it uses a symbolic
summarization of data series in the frequency domain based
on DFT).

Summary reorganization & multi-level scan. This
last category skips the step of building an index structure; it
rather relies on carefully organizing and storing the data se-
ries representations on disk. Using this approach, data can
be read in a step-wise function, where distance estimations
for all data series are gradually refined as we read the sum-
marizations in increasing detail. Both the DFT and DHWT
summarizations have been studied in this context [21, 16].

Although the problem of data series indexing has attracted
considerable attention, there is little research so far in prop-
erly evaluating those indexes. In this work, we focus on
studying the properties of data series query workloads. The
aim is to better understand the characteristics of di↵erent
queries, and how these can be used to e↵ectively test a data
series index under di↵erent, but controllable conditions.

3. CHARACTERIZING WORKLOADS
When navigating an index, we make use of the lower

bounds (computed based on the summarizations) of the true
distances of data series in the original space. This technique
guarantees that there will be no false negatives in the candi-
date set, but it does not exclude the false positives. There-
fore, the indexes need to fetch the raw data series as well,
and check them before returning the answer in order to filter
out the false positives, and thus guarantee the correctness
of the final answer.

The use of lower bounds can be conceptually thought of
as the cut-o↵ point in the distance between two summarized
data series. Below this point, the corresponding raw data
have to be checked. To capture this notion, we can use the

(a) Points in ✏-area (✏ = 1.0) (b) # of points in ✏-area

Figure 2: Two random queries with nearest neigh-
bors depicted with “⇥”.

Tightness of Lower Bound (TLB) [31], which is measured as
the average ratio of the lower bound over the true distance.
We formalize this notion by first introducing here the Atomic
Tightness of Lower Bound (ATLB), which is the same ratio,
but defined for a specific query and data series pair.

Definition 1 (Atomic Tightness of Lower Bound).
Given a lower bounding function L, the atomic tightness of

lower bound (ATLB) between two data series q and x is

defined as

ATLB(L,x, q) = L(x, q)/DIST (x, q) (1)

Definition 2 (Tightness of Lower Bound). Given

a summarization with lower bounding function L, a set of

queries Q and a set of data series D, the tightness of lower

bound (TLB) for this summarization is defined as

TLB(L) =
1

N ⇥M

X

q2Q

X

x2D

ATLB(L,x, q) (2)

Note that the TLB is small for an inaccurate summariza-
tion, i.e., the summarization tends to significantly under-
estimate the distance. As a result, data series under this
summarization will look much closer than they actually are.
Consequently, the index will have to check more raw data,
leading to a longer execution time.

Example 1. Figure 2(a) demonstrates the implications

of the TLB . For simplicity, we represent each data series

as a point in a two-dimensional space, i.e., d = 2. In this

example, we plot two queries q1, q2 and mark their nearest

neighbors with a bold “⇥”. Assume MINDIST (q1) = 0.33,
MINDIST (q2) = 0.26, and all data series are summarized

using the same summarization method. Let the ATLB be-

tween the queries and any data point be 0.5, i.e., the lower

bound of the distances between q1 or q2 and all other points

is 0.5 times their actual distance. According to the definition

of ATLB, a point x cannot be pruned if

L(x, q) MINDIST (q) (3)

, DIST (x, q) MINDIST (q)
ATLB(L,x, q)

. (4)

This means that for q1, all points whose actual distance is

within a radius ⇢ = 0.33
0.5 from q1’s nearest neighbor can not

be pruned, because their lower bound distances are less than

the distance to the answer. Since ATLB(L,x, q) 2 (0, 1],
the right hand side of Inequality (4) is always no less than

MINDIST (q). These ranges are depicted as disks in Fig-

ure 2(a).

Since di↵erent summarizations (and hence di↵erent TLBs)
can be employed, we need a method to generate query work-
loads that are summarization-independent so that it does
not accidentally favor one summarization over another. To
achieve that, we start by formalizing Example 1 using the
notion of minimum e↵ort that an index has to undertake for
a specific query. We then generalize this concept to a mea-
sure that is summarization/index-independent, called hard-

ness, for a given query and a given set of data series, and
describe the connection between hardness and ATLB/TLB.

3.1 Minimum Effort
We define Minimum E↵ort (ME) as the ratio of points

over the total number of series that an index has to fetch to
answer a query.

Definition 3 (Minimum Effort). Given a query q,

its MINDIST (q) and a lower bounding function L, the

minimum e↵ort that an index using this lower bounding func-

tion has to do in order to answer the query is defined as

µ

L(q) = |{x 2 D|L(x, q) MINDIST (q)}|/|D|
As we have seen in Example 1, given a fixed ATLB be-

tween the query and data series, data series that contribute
toME are within a radius ⇢ = MINDIST (q)

ATLB(L,x,q) from the query’s
nearest neighbor and these data series cannot be pruned.
The size of this radius is inversely proportional to ATLB

and proportional to MINDIST (q).
It is important to clarify that this is theminimum possible

e↵ort that an index will have to undertake, and in most
cases it will be smaller than the actual e↵ort that the index
will actually do. This is because the search for the solution
hardly ever starts with the real answer as a best-so-far.

3.2 Hardness
Recall that our goal is to generate query workloads that

are summarization-independent. Since minimum e↵ort is
tied to a specific summarization, we need a more general
notion to capture how hard a query is. Intuitively, the hard-
ness of a query is related to the number of points around
its nearest neighbor (true answer). Given this intuition, we
define the ✏-Near Neighbors (✏-NN) of a query q as follows.

Definition 4 (✏-Near Neighbors). Given ✏ � 0, the
✏-near neighbors of a query q is N ✏(q) = {x 2 D|DIST (x, q)
 (1 + ✏)MINDIST (q)}, i.e., all the points in D that are

within (1+✏)MINDIST (q) of the query’s nearest neighbor.

The ✏-NN naturally defines a hypersphere around the near-
est neighbor of the query. In the rest of this paper, we will
refer to this hypersphere as the ✏-area. Now we define the
hardness of a query as follows.3

Definition 5 (Hardness). Given ✏ � 0, the hardness

of a query q is ↵

✏(q) = |N✏(q)|
|D| , i.e., the fraction of D that

is within (1 + ✏)MINDIST (q) of the query.

3A similar definition can also be found in [4].

Note that for an ✏-area to cover all the points that cannot
be pruned, ✏ needs be no less than 1

ATLB(L,x,q)�1 according

to Inequality (4). Using the example in Figure 2(a) and
assuming the total number of points in the dataset is 100,
since ATLB is 0.5, ✏ = 1.0 defines the area where no points
can be pruned. In this case, ↵✏(q1) = 0.06 and ↵

✏(q2) =
0.18, i.e., q1 is a much easier query than q2.
Even though we have drawn a connection between ATLB

and hardness, it is worth noting that hardness and ATLB

(and hence TLB) are two intrinsically di↵erent notions. While
we can use the ATLB as a way to calibrate our ✏ values,
TLB is tied to a specific index structure and summarization
technique combination. Hardness on the other hand is a
property of a dataset; when the hardness of a query is high,
there are more points distributed at a close distance to the
query’s nearest neighbor, and as a result if the TLB is low,
the index will have to do more e↵ort, since it will have to
check a larger amount of data.

3.3 Discussion
Figure 2(b) shows the number of points in the ✏-area when

✏ increases for both q1 and q2. These two queries show very
di↵erent behavior; the hardness of q2 increases significantly
as ✏ increases while the hardness of q1 stays relatively still
for large ✏. As a result, “easy” queries such as q1 will be
easy for a reasonably “smart” summarization and index, and
therefore lead to similar performance. On the other hand,
queries such as q2 are good candidates to test various sum-
marizations under examination because 1) it is reasonably
“hard” so that any stress test could be conducted and 2) the
number of points around the true answer increases almost
linearly as ✏ increases, which makes it easier to observe the
subtle di↵erences for various summarizations. Recall that
we could think of the lower bounding function of a summa-
rization as a cut-o↵ point, below which one cannot prune
any points. When points are roughly uniformly distributed
in the ✏-area, such “cut-o↵” point can be better captured.

4. EVALUATION OF PREVIOUS WORK

4.1 Datasets and Workloads
In this section, we review some common datasets and their

corresponding workloads that have been used in the litera-
ture. We use the same datasets in our experimental section
as well. For capturing trends and shapes, we z-normalize
(mean=0, std=1) all data series following common practice.
RandWalk [1, 12, 24, 8, 30, 2, 5, 16, 20, 6, 28, 35]. This

dataset is synthetically produced using a random walk data
series generator. The step size in each data series varies
according to a Gaussian distribution. We start with a fixed
random seed and produce 200,000 data series of length 1024,
256 and 64.
EEG [34, 18, 2, 20, 26]. We use the electroencephalo-

grams dataset from the UCI repository [3], and sample 200,000
data series of length 1024, 256 and 64 from the dataset to
be used as the dataset.
DNA [5, 6, 35]. We use the complete Human DNA

(Homo Sapiens), obtained from the Ensembl project.4 We
sample the dataset to create 200,000 data series of length
1024, 256 and 64.

4ftp://ftp.ensembl.org/pub/release-42/

0.25 0.5 1.0ε

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(a) RandWalk (64)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(b) EEG (64)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(c) DNA (64)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(d) RandWalk (256)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(e) EEG (256)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(f) DNA (256)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(g) RandWalk (1024)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(h) EEG (1024)

0
25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f q
ue

rie
s

(i) DNA (1024)

Figure 3: Histograms of query hardnesses.

The query workloads that have been used in all past stud-
ies are generated in one of the following two ways.

1. A subset of the dataset is used for indexing and a dis-
joint subset is used as queries [5, 16, 6, 35].

2. The entire dataset is used for indexing. A subset of
it is selected and a small amount of random noise is
added on top. This is used as the query set [1, 21, 20].

In our study, we shu✏e the datasets, and use half of each
dataset (100,000 data series) as queries, and the other half
(100,000 data series) as the indexed dataset.

4.2 Hardness Evaluation
One of our key requirements is the ability to test how

indexes scale as they need to check an increasing amount of
data. This is the case with hard queries, for which indexes
are not able to easily identify the true nearest neighbor. In
this subsection, we choose 1,000 random queries from our
initial query set and evaluate the hardness of each one of
them for ✏ 2 {0.25, 0.5, 1}.

The results are depicted in Figure 3. As the histograms
show, for all data series (length 64, 256, 1024) the query
workloads are mainly concentrated towards easy queries.
For ✏ = 0.5, the average hardness is less than 0.1, while
for ✏ = 1.0, the average of hardness is less than 0.25. Addi-
tionally, as the ✏ decreases to 0, the hardness of the queries
drops very rapidly for both the RandWalk and the DNA
datasets. These low hardness values further motivate us
for the need of a controlled way to generate workloads with
queries of varying hardness.

5. QUERY WORKLOAD GENERATION
As we demonstrated in the previous section, all the widely-

used (i.e., randomly generated) query workloads are biased

Figure 4: Example of 3 queries, where the ✏-area of
q1 and q2 intersect. As a result we cannot control
the hardness of these two queries independently, as
densifying each one of the two zones might a↵ect
also the hardness of the other query.

q1 q2

q4 q5 q6

q3
DIST(q1, q2) > Rε(q1) + Rε(q2)

DIST(q2, q6) > Rε(q2) + Rε(q6)

DIST(q2, q3) > Rε(q2) + Rε(q3)

DIST(q1, q5) > Rε(q1) + Rε(q5)

DIST(q4, q5) > Rε(q4) + Rε(q5)

DIST(q2, q5) > Rε(q2) + Rε(q5)

Figure 5: Maximal clique formed by q1, q2, and q5.

towards easy queries. In this paper, we argue that an e↵ec-
tive query workload should contain queries of varying hard-
ness. Since most existing queries are easy, we start with
those easy queries and make them harder by adding more
points in their ✏-areas.
We start with a list of di↵erent hardness values in non-

decreasing order [↵✏
1, ...,↵

✏
n] with respect to some ✏ that is

provided by the user (
Pn

i=1 ↵
✏
i 1, ↵

✏
i ↵

✏
j for i < j),

and an input sample query set Q that contains many easy
queries (produced through random generation). Therefore,
for each hardness value ↵

✏
i , we need to densify (i.e, adding

more points) a certain region in D so that we could select a
subset of queries of size n from Q such that their hardness
values match the predefined values ↵✏

i for i 2 {1, ..., n}.
The key problem here is to ensure the ✏-areas of selected

queries do not intersect with each other so that when we
densify the ✏-areas the hardness value will stay exactly as
required. Figure 4 shows an example that q1 and q2 inter-
sect. In this case, we can either choose q1 and q3, or q2 and
q3. The next step is to identify the amount of points we
need to add in each ✏-area. Finally, we spread these points
in such a way that as the TLB of the index gets worse, the
minimum e↵ort captured by the workload increases, follow-
ing our intuitions described in Section 3 and Example 1.

5.1 Finding Non-intersecting Queries
Given an initial sample of queries Q, we want to find the

largest subset of Q, where it holds that the ✏-areas around
each query do not intersect.
Our first step is to calculate the radius of each ✏-area. In

order to do this we need to find the distance to the near-
est neighbor and multiply it by (1 + ✏). Since we are using
Euclidean distance (a metric), we can use the triangle in-
equality in order to find non-intersecting queries.
Given a distance function DIST in metric space, we set

R✏(q) = (1 + ✏)MINDIST (q) as the radius of the ✏-area.
Two queries q

i

, q

j

2 Q, q

i

6= q

j

are non-intersecting if and

Algorithm 1 FindNonIntersectingQueries

1: R✏ createRadius(Q,D, ✏)
2: g createV erticesFromQueries(Q)
3: for (qi, qj) 2 Q⇥Q do
4: if DIST (qi, qj) > R✏(qi) +R✏(qj) then
5: g.addEdge(qi, qj)
6: V g.getSortedV ertices() {Sorted by ascending de-

gree}
7: Q0 ;
8: for q 2 V do
9: if isCompatible(q,Q0) then
10: Q0 Q0 [{q}
11: return Q0

only if the following holds (by the triangle inequality):

DIST (qi, qj) > R✏(qi) +R✏(qj)

In order to validate this constraint, we first need to cal-
culate all the pairwise distances for all the queries in Q,
and for each query q, the distance to its nearest neighbor
MINDIST (q).

Given the set of queries and their pairwise distances, we
can create a graph G, where each vertex represents a query,
and an edge exists if two queries qi and qj do not interfere
with each other. Now it is clear that our problem is closely
related to the maximum clique problem. Figure 5 illustrates
an example graph with 6 queries, where queries q1, q2, q5

form the maximum clique, being mutually non-intersecting.
Note that finding the maximum clique in graph G is NP-

complete, we therefore employ a greedy approach to select
queries by assigning a query q to some ↵✏

i (denoted as q(↵✏
i))

if its current hardness is smaller than ↵

✏
i and if its ✏-area

does not intersect with the ✏-areas of all previously assigned
queries. This ensures that when densifying the ✏-area for
q(↵✏

i), the hardness of other selected queries q(↵✏
j) (j 6= i)

will remain una↵ected.
Algorithm 1 describes how to find non-intersecting queries.

The algorithm sorts the vertices of the graph based on their
degree. The intuition is that high-degree vertices have more
compatible vertices. We then keep reading vertices in that
order, adding compatible ones to a list while skipping in-
compatible ones.

5.2 Deciding the Number of Points to Densify
As we discussed, it is important to generate a benchmark

that has queries of varying hardness. In the earlier section,
we have established the notion of hardness and have dis-
cussed how to select a set of candidate queries given a query
set. In this section, we will describe how to determine the
number of points to densify.
Given the list of n input hardness values [↵✏

1, ...,↵
✏
n] with

respect to some ✏. Each hardness value now has a corre-
sponding query, and we need to identify the number of points
to densify to the ✏-area of each query in order to achieve the
target hardness. Let xi be the number of points to add for
N ✏(q(↵✏

i)) and Ni = |N ✏(q(↵✏
i))| is the current number of

points in q(↵✏
i)’s ✏-area, we have the following linear system.

↵

✏
1 =

N1 + x1

N +
Pn

i=1 xi
, ..., ↵

✏
n =

Nn + xn

N +
Pn

i=1 xi
(5)

Representing this linear system in matrix form, we have

(A� I)x = b, (6)

where

A =

0

BB@

↵

✏
1 ↵

✏
1 ... ↵

✏
1

↵

✏
2 ↵

✏
2 ... ↵

✏
2

...

↵

✏
n ↵

✏
n ... ↵

✏
n

1

CCA

and

b = [N1 � ↵

✏
1N, ..., Nn � ↵

✏
nN]T .

This linear system can be easily solved and it will tell us
how many points to densify in the ✏-area for each selected
query.

5.3 Densification Process
In this section we describe how to densify the ✏-areas for

the selected queries. Given that most summarization and in-
dex methods require the data to be z-normalized, we could
not directly add random points in the ✏-area since after z-
normalization those points could be outside of the ✏-area. In-
stead, we utilize existing points in the ✏-area. Therefore, the
candidate strategies for densification are the following: (a)
randomly choosing a point in N ✏(q(↵✏

i)) and adding noise
to create a new point; (b) adding noise to the query’s near-
est neighbor (ignoring all other points in its ✏-area); and (c)
adding points as uniformly as possible in the ✏-area.
To demonstrate di↵erent densification strategies, we gen-

erate queries of hardness 0.2 (✏ = 1.0) for a dataset of
100,000 data series. According to Section 3.2, this ✏ allows
us to test less tight representations with TLBs as low as 0.5.
To evaluate the e↵ort for every query, we use four standard
data series summarization techniques (SAX, FFT, DHWT,
PAA) at various resolutions, ranging from 8 to 64 bytes per
data series. The data series are of length 256, and for each
summarization we measure the minimum e↵ort required.
Random densification. A näıve method to increase

the hardness in an ✏-area is to choose random points from
this area and add noise to them, thus producing the desired
amount of extra points. A property of this method is that
the original distribution of the points will not change sig-
nificantly. The problem with this method, however, is that
for very good summarization methods (large TLB values),
as we increase the number of points in the ✏-area, the mini-
mum e↵ort will not necessarily increase relatively to it. As
a result, indexes with di↵erent TLB values might have the
same e↵ort to answer a query.
The result of a query generated with this method can

be seen in Figure 6(a). The histogram at the top of the
figure displays the distribution of the points in the densi-
fied ✏-area. As we can see the further away we get from
the nearest neighbor, the more points we find at each area.
The heat map in the center represents the locations of the
points that contribute to the minimum e↵ort, i.e., L(x, q)
MINDIST (q). The color represents the portion of these
points in the corresponding bucket of ✏. Finally, the vertical
graph on the right side represents the minimum e↵orts of
the di↵erent summarization methods.
As expected, the results show that crude summarizations

(SAX-8, DHWT-8, FFT-8, PAA-8) that use less bytes for
representing the data series have much larger minimum ef-
forts. From the plot we could infer that a significant portion

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 −
 0.

1

0.1
 −

0.2

0.2
 −

0.3

0.3
 −

0.4

0.4
 −

0.5

0.5
 −

0.6

0.6
 −

0.7

0.7
 −

0.8

0.8
 −

0.9
0.9

 −
1

ε bucket range

Su
m

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

Min. Effort

(a) Query with less sparse histogram

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 −
 0.

1

0.1
 −

0.2

0.2
 −

0.3

0.3
 −

0.4

0.4
 −

0.5

0.5
 −

0.6

0.6
 −

0.7

0.7
 −

0.8

0.8
 −

0.9
0.9

 −
1

ε bucket range

Su
m

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Min. Effort

(b) Query with more sparse histogram

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 −
 0.

1

0.1
 −

0.2

0.2
 −

0.3

0.3
 −

0.4

0.4
 −

0.5

0.5
 −

0.6

0.6
 −

0.7

0.7
 −

0.8

0.8
 −

0.9
0.9

 −
1

ε bucket range

Su
m

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

Min. Effort

(c) 1NN densified query

0
5

10
15
20
25

%
 o

f p
oi

nt
s

 lo
ca

te
d

in
ε

PAA−64
FFT−64

DHWT−64
SAX−64
PAA−32
FFT−32

DHWT−32
SAX−32
PAA−16
FFT−16

DHWT−16
SAX−16

PAA−8
FFT−8

DHWT−8
SAX−8

0 −
 0.

1

0.1
 −

0.2

0.2
 −

0.3

0.3
 −

0.4

0.4
 −

0.5

0.5
 −

0.6

0.6
 −

0.7

0.7
 −

0.8

0.8
 −

0.9
0.9

 −
1

ε bucket range

Su
m

m
ar

iz
at

io
n

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Min. Effort

(d) Equi-densified query

Figure 6: Two randomly densified, one 1NN densified and one equi-densified queries on a 100,000 data series
randomwalk dataset. Distribution of distances of all data series in the dataset on top, minimum e↵ort for
each summarization technique on the right. Heat maps represent the amount of points that are part of the
e↵ort located at the corresponding bucket of ✏.

of points that contribute to minimum e↵ort may not be in-
cluded by this ✏-area. On the other hand, fine summariza-
tions (SAX-64, DHWT-64, FFT-64, PAA-64) are well cap-
tured by this ✏. Actually, we only need ✏ = 0.6 to capture all
points contributing to the minimum e↵orts. With the his-
togram on the top, it is easy to see that the minimum e↵ort
is related to the distribution of points in the original space.
For example, while the heat map for FFT-64, DHWT-64
and PAA-64 spans a larger range of ✏ values, their minimum
e↵ort is not much greater than that of SAX-64, which spans
a much smaller range. This is because, as we can see in
the histogram at the top, there is a very small amount of
data within ✏ = 0.5 and it does not increase too much as ✏

increases. This situation is more pronounced with another
query example shown in Figure 6(b), where the distribution
of points in the ✏-area is even more skewed.

1NN densification. Another näıve method for increas-
ing hardness in the ✏-area is by just adding noise to the
query’s nearest neighbor itself. This will force all summa-
rizations to make (almost) the same e↵ort, as the area very
close to the nearest neighbor is now very dense and all the
rest of the ✏-area is very sparse. In this case, all e↵orts for

all summarizations are almost identical. An example 1NN
densified query is shown in Figure 6(c).
Equi-densification. As discussed in Section 3.3, we want

to ensure that the hardness points are distributed as uni-
formly as possible within the ✏-area corresponding to each
possible ATLB value. This ensures that we capture the sub-
tle di↵erences for various summarizations. To this end, we
propose equi-densification that aims to distribute the extra
points we need to add in such a way that buckets that are
originally almost empty get a large number of points, and
buckets that are almost full get a small number of points.
In order to achieve this, we bucketize ATLB values, and

accordingly the ✏ values are bucketized (in a non-uniform
way). For each ATLB bucket we want to make sure there is
an equal amount of points. Densification is done by creating
linear combinations of points located within and outside of
each bucket. This ensures the diversity of the generated
data series, allowing us to control the location of the data
points in the ✏-area, and also ensures that the resulting data
series after z-normalization will fall in the desired location
with high probability.

A query produced with equi-densification is depicted in
Figure 6(d). The histogram on the top shows that the first
few buckets have more points, while the last few buckets
have less. This happens because ✏ is inversely proportional
to ATLB, and as a result ✏ bucket ranges are small for large
ATLB values and large for small ATLB values. For example
for ATLB values in [0.5, 0.6] the corresponding ✏ values are in
[0.67, 1.0] and for ATLB values in [0.6, 0.7] the corresponding
✏ values are in [0.43, 0.67] As we can see in the heat map, the
e↵ort points are now evenly distributed in the ✏-areas. Note
also that as the bounds of a summarization get worse, we
need to increase the ✏ to include all points that contribute
to the minimum e↵ort.

Therefore, equi-densification achieves the desired result,
accurately capturing the relative di↵erences among di↵erent
summarizations, and consequently leading to correct per-
formance comparisons of indexes based on their TLB. We
further validate this claim in the experimental evaluation.

6. EXPERIMENTS
In this section, we provide an experimental evaluation of

the proposed method. We generate query workloads on the
three datasets in Section 4 using our method described in the
previous section. All our datasets contain 100,000 data series
with length 256. Given a set of desired hardness values,
✏, and the densification mode, our method produces a new
dataset that is the original dataset with extra points, and
a set of queries that forms the workload that matches the
desired hardness values.

We performed three sets of experiments. The first inves-
tigates the amount of non-interfering queries we can find for
each dataset. The second is intended to compare the three
di↵erent densification methods with regards to the mini-
mum e↵ort of various common summarization techniques,
i.e., PAA, FFT, DHWT and SAX. For each one of the sum-
marizations, we used 8, 16, 32 and 64 bytes to represent each
data series. In the third set of experiments, we used two real
world indexes, iSAX 2.0 [6] and the R-Tree [13] using PAA
as a summarization method. This last experiment aims to
show the impact of our benchmark on these indexes com-
pared to choosing random points from the dataset (queries
are left outside of the indexed data). A comprehensive ex-
perimental comparison of various data series indexes is out
of the scope of this study and is part of our future work.

6.1 Non-interfering Queries
In this experiment, we used 100,000 data series from each

dataset as the indexed data, and 100,000 data series as sam-
ple queries. We generated sets of 1,000 (100 sets), 2,000
(50 sets) and 4,000 (25 sets) queries, and run our non-
interfering queries discovery algorithm on each one of them
for ✏ 2 {0.25, 0.5, 1.0}. Our algorithm evaluates each set of
queries against the corresponding dataset, and we report the
average number of queries found per dataset, query set size
and ✏, as well as the corresponding error bars.

The results are depicted in Figure 7 (error bars are very
small). We observe that for RandWalk and DNA, using
a large ✏ only allows us to find an average of 7-10 non-
interfering queries, and as ✏ decreases we can find up to
300-600 queries. For the EEG dataset, the data distribution
allows us to find a much higher number of non-interfering
queries, which is in the order of thousands. Note that since
we are mainly interested in generating queries with high

hardness values, we do not need too many queries. Further-
more, the constraint

Pn
i=1 ↵

✏
i 1 restricts the number of

hard queries that we could produce for one dataset. For ex-
ample, we can generate 5 queries of hardness 0.2, but only
2 queries of hardness 0.5 and 0.5, respectively. Since this
number of queries is small for a comprehensive benchmark,
the solution is to use multiple datasets with corresponding
query workloads; even in the case of ✏ = 1.0, we can run our
algorithm 100 times to get 100 di↵erent output datasets with
at least 3 di↵erent queries each, for a total of 300 queries.

6.2 Densification Mode
In this experiment, we generated 3 di↵erent queries with

a hardness of 0.2 for each one of them (✏ = 1.0). For each
query we used a di↵erent densification method. Our goal is
to measure how well the di↵erent densification methods cap-
ture the relative summarization errors of di↵erent summa-
rization techniques. We use 1� TLB as the summarization
error for each technique. This number intuitively captures
how far the lower bound of a summarization is from the true
distance. We report the relative summarization errors in the
results (normalized by the smallest summarization error).
In our experiments, the summarization with the smallest
error was SAX (64 bytes). The TLBs for each summariza-
tion were computed by comparing the distances to the lower
bounds for 100 random queries against all the other points
of the dataset, for each of the datasets we generated.
Figure 8 shows the average relative summarization errors

for each dataset (averaged over the 100 di↵erent benchmarks
generated). The results show that 1NN densification results
to almost equal e↵ort for all summarizations, while random
densification tends to over-penalize bad summarizations and
favor good ones. Both situations are not desirable and can-
not be useful. In contrast, equi-densification has an e↵ort
much more closely related to the summarization error across
all datasets. As a result, equi-densification well captures the
actual pruning power of each summarization and does not
over-penalize or under-penalize any of the summarizations.

6.3 Case Study on Actual Indexes
In our last experiment, we generated 85 datasets with 3

equi-densified queries corresponding to each one of them,
which we will refer to as EDQ, and 3 additional queries (per
dataset) that were randomly selected from the input queries
sample without any densification. The 3 EDQ queries have
hardness values of 0.1, 0.3 and 0.5 (✏ = 1.0). We generated
510 queries in total, half of which were random and half
equi-densified. Our goal for this study is to demonstrate the
qualitative di↵erence of using our query workload versus a
workload of randomly generated queries.
Figure 9 shows the histograms of the distribution of the

hardnesses for the queries on each workload for every dataset
for ✏ = 1.0. Again, the random workloads are concen-
trated on easy queries with only a very small number of hard
queries. On the contrary, the EDQ workload has been de-
signed to produce queries of varying hardness values, and as
a result their histograms contain equal number of queries in
the 0.1, 0.3 and 0.5 bucket. This confirms that our method
produces queries with desired properties.
In order to specifically evaluate the e↵ect of hard queries,

we further split the random workload into two sets, result-
ing in 3 di↵erent workloads: Random, where we use all the
randomly selected queries, Random-H, where we only use

0

100

200

300

1000 2000 3000 4000
Input queriesAv

er
ag

e
qu

er
ie

s
fo

un
d epsilon 0.25 0.5 0.75 1

(a) RandWalk dataset

0

150

300

450

600

1000 2000 3000 4000
Input queriesAv

er
ag

e
qu

er
ie

s
fo

un
d epsilon 0.25 0.5 0.75 1

(b) DNA dataset

550

1100

1650

2200

1000 2000 3000 4000
Input queriesAv

er
ag

e
qu

er
ie

s
fo

un
d epsilon 0.25 0.5 0.75 1

(c) EEG dataset

Figure 7: Number of independent queries found for each dataset for various input sample query sizes.

64 bytes 32 bytes 16 bytes 8 bytes

100
100.5

101
101.5

102
102.5

100
100.5

101
101.5

102
102.5

100
100.5

101
101.5

102
102.5

R
AN

D
O

M
W

ALK
D

N
A

EEG

PAA FFT DHWT SAX PAA FFT DHWT SAX PAA FFT DHWT SAX PAA FFT DHWT SAX
Summarization

Va
lu

e
re

la
tiv

e
to

 S
AX

−6
4

Summ. Error Equi−dens. (Effort) Random dens. (Effort) 1NN dens. (Effort)

Figure 8: Minimum e↵orts for di↵erent summarization techniques at di↵erent resolutions (8-64 bytes) rep-
resenting 256 point data series, compared to the summarization error (1-TLB). All the values have been
normalized against SAX-64 which was the overall tightest summarization method.

queries with hardness larger than 0.5, and EDQ generated
by our method. We indexed all three datasets with both
iSAX [30] and R-Trees [13] with PAA [17], and measured
the average query answering time per workload. Figure 10
illustrates the normalized query answering time. The results
show that when the Random workload is used, queries are
on average easy, and consequently, the two indexes seem to
have similar performance. The same observation also holds
when only the hard queries are selected using Random-H, in-
dicating that simply selecting the hard queries of a randomly
generated query workload cannot lead to a good query work-
load.

The real di↵erence comes when the workload becomes
harder using the EDQ workload. In this case, the di↵er-
ences between the indexes become more prominent. The
reason behind this can be intuitively seen in Figure 11,
where we plot the distribution of the distances to the query’s
nearest neighbor in the ✏-area for the three di↵erent work-
loads. We can see that with random queries, (Random
and Random-H), the vast majority of the points are lo-
cated towards the large ✏ values. The di↵erence between
Random and Random-H is just on the number of points in
each bucket. As we discussed earlier, such a distribution of

points cannot capture the relative TLB of di↵erent indexes,
as there are fewer points in small range to the true answer
and many more points in larger range. On the other hand,
the distribution of EDQ is very di↵erent from the others,
which ensures there are roughly equal number of points for
the corresponding ATLB bucket.

7. CONCLUSIONS
In this work, we focus on the problem of how to system-

atically characterize a data series query workload, and sub-
sequently, how to generate queries with desired properties,
which is a necessary step for studying the behavior and per-
formance of data series indexes under di↵erent conditions.
We demonstrate that previous approaches are not viable
solutions as they are biased toward easy queries. We for-
mally define the key concept of query hardness and conduct
an extensive study on hardness of a data series query. Fi-
nally, we describe a method for generating data series query
workloads, which can be used for the evaluation of data se-
ries summarizations and indexes. Our experimental evalu-
ation demonstrates the soundness and e↵ectiveness of the
proposed method.

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

Hardness

%
 o

f q
ue

rie
s

(a) RandWalk

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

Hardness

%
 o

f q
ue

rie
s

(b) DNA

Random

EDQ
0

25
50
75

100

0
25
50
75

100

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

Hardness
%

 o
f q

ue
rie

s

(c) EEG

Figure 9: Histogram of hardnesses for ✏ = 1.0.

R
an

do
m

R
an

do
m
−H

ED
Q

0
5

10
15
20

R−
Tre

e
iS

AX
R−

Tre
e

iS
AX

R−
Tre

e
iS

AX

Av
g.

 q
ue

ry
 ti

m
e

(n
or

m
.)

(a) RandWalk

R
an

do
m

R
an

do
m
−H

ED
Q

0
5

10
15
20

R−
Tre

e
iS

AX
R−

Tre
e

iS
AX

R−
Tre

e
iS

AX

Av
g.

 q
ue

ry
 ti

m
e

(n
or

m
.)

(b) DNA

R
an

do
m

R
an

do
m
−H

ED
Q

0
5

10
15
20

R−
Tre

e
iS

AX
R−

Tre
e

iS
AX

R−
Tre

e
iS

AX

Av
g.

 q
ue

ry
 ti

m
e

(n
or

m
.)

(c) EEG

Figure 10: Average query answering time compar-
ison between iSAX (256 characters, 16 segments)
and R-Tree (PAA with 8 segments) normalized over
iSAX.

0.1 0.5 0.9
Epsilon

of

 p
oi

nt
s

1
25

K
50

K

(a) Random

0.1 0.5 0.9
Epsilon

of

 p
oi

nt
s

1
25

K
50

K

(b) Random-H

0.1 0.5 0.9
Epsilon

of

 p
oi

nt
s

1
25

K
50

K

(c) EDQ

Figure 11: Distribution of points in ✏ = 1.0 area for
3 types of queries for RandWalk.

References
[1] R. Agrawal, C. Faloutsos, and A. Swami. E�cient similarity

search in sequence databases. In FODO, 1993.
[2] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree:

E�cient time series search and retrieval. In EDBT, 2008.
[3] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth. The uci kdd

archive of large data sets for data mining research and experi-
mentation. In SIGKDD Explorations, 2000.

[4] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
is “nearest neighbor” meaningful? In ICDT, 1999.

[5] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX 2.0:
Indexing and mining one billion time series. In ICDM, 2010.

[6] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and
E. Keogh. Beyond one billion time series: indexing and min-
ing very large time series collections with isax2+. KAIS, 2013.

[7] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally
adaptive dimensionality reduction for indexing large time series
databases. In SIGMOD, 2002.

[8] K.-P. Chan and A.-C. Fu. E�cient time series matching by
wavelets. In ICDE, 1999.

[9] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu. Indexable pla
for e�cient similarity search. In VLDB, 2007.

[10] M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas. Un-
certain time-series similarity: Return to the basics. In VLDB,
2012.

[11] M. Dallachiesa, T. Palpanas, and I. F. Ilyas. Top-k nearest neigh-
bor search in uncertain data series. In VLDB, 2015.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast sub-
sequence matching in time-series databases. In SIGMOD, 1994.

[13] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, 1984.

[14] P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe, and
P. Zegers. Computational intelligence challenges and applica-
tions on large-scale astronomical time series databases. IEEE
Comp. Int. Mag., 9(3), 2014.

[15] K. Kashino, G. Smith, and H. Murase. Time-series active search
for quick retrieval of audio and video. In ICASSP, 1999.

[16] S. Kashyap and P. Karras. Scalable knn search on vertically
stored time series. In KDD, 2011.

[17] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimen-
sionality reduction for fast similarity search in large time series
databases. KAIS, 3, 2000.

[18] E. Keogh and M. Pazzani. Scaling up dynamic time warping to
massive datasets. In PKDD, 1999.

[19] F. Korn, H. V. Jagadish, and C. Faloutsos. E�ciently supporting
ad hoc queries in large datasets of time sequences. In SIGMOD,
1997.

[20] H. Kremer, S. Günnemann, A.-M. Ivanescu, I. Assent, and
T. Seidl. E�cient processing of multiple dtw queries in time
series databases. In SSDBM, 2011.

[21] C.-S. Li, P. Yu, and V. Castelli. Hierarchyscan: a hierarchical
similarity search algorithm for databases of long sequences. In
ICDE, 1996.

[22] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic represen-
tation of time series, with implications for streaming algorithms.
In DMKD, 2003.

[23] J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in
time series using bag-of-patterns representation. J. Intell. Inf.
Syst., 39(2), 2012.

[24] D. Rafiei and A. Mendelzon. Similarity-based queries for time
series data. In SIGMOD, 1997.

[25] D. Rafiei and A. Mendelzon. E�cient retrieval of similar time
sequences using dft. In ICDE, 1998.

[26] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. West-
over, Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining
trillions of time series subsequences under dynamic time warp-
ing. In KDD, 2012.

[27] K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality
reduction for similarity searching in dynamic databases. In SIG-
MOD, 1998.

[28] P. Schäfer and M. Högqvist. Sfa: A symbolic fourier approxima-
tion and index for similarity search in high dimensional datasets.
In EDBT, 2012.

[29] D. Shasha. Tuning time series queries in finance: Case studies
and recommendations. IEEE Data Eng. Bull., 22(2), 1999.

[30] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized
time series. In KDD, 2008.

[31] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann,
and E. Keogh. Experimental comparison of representation meth-
ods and distance measures for time series data. DMKD, 26(2),
2013.

[32] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-
adaptive and dynamic segmentation index for whole matching
on time series. In VLDB, 2013.

[33] L. Ye and E. J. Keogh. Time series shapelets: a new primitive
for data mining. In KDD, 2009.

[34] B.-K. Yi, H. Jagadish, and C. Faloutsos. E�cient retrieval of
similar time sequences under time warping. In ICDE, 1998.

[35] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for in-
teractive exploration of big data series. In SIGMOD, 2014.

[36] K. Zoumpatianos, S. Idreos, and T. Palpanas. Rinse: Interactive
data series exploration. In VLDB, 2015.

