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• Proxemics = the study of 
personal space [Hall, 1966]
• Personal space:  the space that 

people ‘form’ around their bodies

• Human perceptions of space 
are modulated by
• culture 
• gender
• social status
• other individual characteristics

e.g. personality traits (DeJulio 
and Duffy, 1977; Williams, 1971)  

“Space Speaks” -
- Proxemics  
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Proxemics – Types of 
Space

• Public distance
• the area of space between an 

audience and a well-known speaker 
(interactions usually not personal, 
anonymous)

• Social or formal distance  
• the spaces in which people feel 

comfortable during business 
interactions and social interactions  
with acquaintances and strangers

• Personal or informal distance
• used among friends and family 

members 

• Intimate distance
• acceptable only among closest 

friends and intimates
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• A set of stable properties of people

Personality Behaviour
understand/predict

infer
(hidden, constant) (evidence, vary within context)

What is personality? 

• Multifactorial models / traits:
• the Big Five 

• ExtraversionExtraversion vs. Introversion
• Emotional stability vs. NeuroticismNeuroticism
• Agreeableness vs. Disagreeableness
• Conscientiousness vs. Un-conscientiousness
• Openness to experience vs. non-open-minded 



 Page 5

Personality-awareness is gaining importance in 
many fields.

• Human-Computer Interaction. Towards user 
centered design [Goren-Bar et al. 2007], [Conati 
et al. 2003].

• Robotics. Robots showing human behaviour 
enhance people’s confort and trustness [Brooks 
and Arkin 2007].

• Computer Vision. Stable properties of human 
behaviour (not specifically related to personality) 
encoded as an ‘a priori’-knowledge to enhance 
the people tracking systems accuracy.

Why personality? 
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• Exploit only significant proxemics cues for the 
automatic recognition of two personality 
traits, Extraversion and Neuroticism

• Build subject-specific behavioral models and use 
them as “a priori” knowledge to improve the 
estimates of a particle filter based tracking system

• Use the people spatial behaviors, recognized online, 
to control active cameras in order to collect near-
field data (e.g., data for head pose and facial 
expressions recognition)

Goals
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Assumptions

• personality shows up in a clear form in the 
course of social interaction

• thin slices of social behavior are enough for 
a reliable classification of personality traits 

• social signals (e.g., proxemics cues) can be 
used for thin slice-driven classification

Automatic Personality 
Recognition
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• Scenario: cocktail party 
where a group of people (6-7 
subjects) interact 
spontaneously

• People moving freely rather 
than in a seating arrangement 
as in previous works.

• Data: 2 sessions of 30 min 
each, for a total of 13 targets

• Personality test: Big Five 
Marker Scale

• Video sensors: 4 fixed and 3 
PTZ cameras.

Experimental Setup
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Multiple people tracking system

Joint (position+pose) particle filter 
tracking

• 3D appearance model 
(shape+color)

• Effective occlusion handling    
(HJS algorithm) [Lanz, 2006] 
[Lanz&Brunelli,2006]

• Spatial exclusion principle 
implemented through a MRF

Joint Tracking and 
Pose Estimation
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• Minimum Distance: distance among a given target and the 
closest one 

• Introverts tend to stay at a more intimate distance to few people
• Extroverts tend to stay at a less intimate distance but to interact 

with more people
• Velocity: variation of the target position every 2 sec. 

• Introverts tend to isolate from the group or get closer to person    
of confidence

• Extroverts tend to move freely and to interact with different 
subjects

• N° of intimate relationships (INT)
• distance < 0.46 meters

• N° of personal relationships (PER)
• Close phase distance < 0.76 meters
• Far phase distance < 1.2 meters

• N° of social relationships (SOC)
• Close phase distance < 1.2 meters
• Far phase distance < 2.10 meters

• N° of public relationships (PUB)
• Close phase distance > 2.10 meters

Feature Extraction

The features vector is computed for each target, for each frame
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SVM classification

• Goal: indentify the proxemics cues significant for 
the automatic recognition of Extraversion and 
Neuroticism

• 2 binary classification tasks (Extroversion vs 
Introversion / Neuroticism vs Emotional Stability)

• Support Vector Classification 
• 2-order polynomial kernel

• Testing: leave one subject out 

• Performance evaluation: Accuracy and F-score 
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SVM Results

Extroversion Neuroticism

Accuracy F-measure Accuracy F-measure

All features 0.66 0.66 0.75 0.69

Distance 0.54 0.38 0.69 0.52

Relationships 0.63 0.62 0.69 0.52

Intimate 0.53 0.37 0.67 0.50

Personal-Close 0.56 0.46 0.56 0.51

Personal-Far 0.56 0.48 0.64 0.39

Social 0.59 0.59 0.64 0.39

Velocity 0.52 0.46 0.64 0.39
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• Embed a model of interactive behavior 
into a Bayesian tracking framework

• Calibrate it to each individual to capture inter-
personal variations that correlate with 
personality traits.

• Show that such model, once calibrated to 
each subject, improves tracking 
performance.

Modeling Interaction 
Patterns
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• Compute for each person the histogram of its 
distance from the other targets within its visual 
attention field.

• Histograms with a prominent peak at a distance 
(<1m) on which people tend to interact. 

• Model the ‘’interaction’’ mode in the histogram 
as a Gamma distribution and fit such model to 
the data at hand.

Modeling Interaction 
Patterns
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α = 2.
0
β = 2.
0 α= 9

β = 0.5

• Different people behaviors correspond to different 
distributions

Extro-
version

Neuro-
ticism

mode spread 
α

weight 
β

T1 62 45 0.80 0.15 0.39

T2 56 44 0.66 0.09 0.29

T3 55 57 0.68 0.09 0.25

T4 40 41 0.82 0.08 0.25

T5 37 39 0.64 0.07 0.09

T6 31 43 0.62 0.07 0.25

T7 29 36 0.66 0.09 0.25

Γ x;α,β =
1

Γ  α β α x α−1e−x / β

Modeling Interaction 
Patterns
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•   Before: a MRF potential encodes the spatial exclusion 
principle. 

•   Now: the MRF accounts for the interaction prior learnt for 
target 

ψ  pt
k , o t

k ; pt ,o t =Γ ∥p t
k
−p t∥;α k ,βk

⋅N o t
k
−o t ;σ o 

Target position Head pose

ot = 0o ot = 90o ot = 180o ot = 270o

Modeling Interaction 
Patterns

The field perceived by the probe target (the red dot) is 
maximal when ot = 270o where he/she sees a subject at the 
learnt social distance.
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Real time estimates computed with (top row) and without 
(bottom row) interaction prior.

Head pose estimation improves significantly!

Tracking Results
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Real time estimates computed with (left) and without (right) 
interaction prior.

Tracking Results

With Interaction Prior Without Interaction Prior
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A 'social logic' can be used to determine the target of interest to 
follow with a PTZ cameras. 
Near field views can provide other informations than localization 
(e.g. emotion recognition). Here we refine head pose estimation.

Example: SOC features computed for the first half of the meeting.

Personality Aware PTZ 

PERSONALITY AWARE PTZ: Define a score of people extroversion 
and follow with PTZ the target with the lowest score (the most 
introvert one). 
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Main Contribution:
• Estimation of the level of Extroversion and Neuroticism 

of people with a SVM classifier using visual features
• Integration, in form of a prior, of a model of interactive 

behavior into a particle filter tracking algorithm.

Future works: 
• validate our approach on more data and different 

scenarios
• further elaborate on personality aware active camera 

and better exploit adaptivity aspects.

Conclusions
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• Relationship between proxemics, visual attention and 
personality traits during interaction.

• Estimation of the level of Extroversion and Neuroticism of 
people with a SVM classifier using visual features

• Integration, in form of a prior, of a model of interactive 
behavior into a particle filter tracking algorithm.

Future works: 
• validate our approach on more data and different 

scenarios
• tighter integration between low-level (tracking and head 

pose estimation) and high-level tasks (personality trait 
classification)

• further elaborate on personality aware active camera and 
better exploit adaptivity aspects.

Conclusions
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