

CONTRIBUTION

Motivation: developing a visual tracking system that is robust and adaptive to changing illumination conditions. Our Scenario: (i) non-homogeneous and non-stationary (slowly varying in time) illumination conditions, (ii) occlusions due to other targets or neighbouring objects.

Idea: learn a global illumination map describing the lighting conditions of the scene. the map as a hierchical Markov Random Field (MRF) with a novel efficient inference approach.

MODELLING THE ILLUMINATION CHANGES

The color change under changing illumination can be described by the so-called diagonal (or von Kries) model [3], according to which each color channel c is multiplied by a single factor β^c .

TRACKING WITH MULTIPLE TEMPLATES

- Multiple people tracking with the Hybrid Joint Separable (HJS) particle filter [1].
- Extending the HJS by introducing **multiple templates**. We consider for each target a discrete set of Γ templates, representing the target under different illumination conditions. The set is obtained by diagonal transforms $P_{\beta} = D_{\beta}P_0$, with $D_{\beta} = \text{diag}(\beta) = 0$ diag $(\beta^r, \beta^g, \beta^b)$.
- Joint estimation of target position \boldsymbol{x}_t and illumination conditions $\boldsymbol{\beta}_t$.
- Tradeoff: adaptivity vs tracking failure. The tracker is able to adapt to target color changes but risks to drift towards background objects with similar appearance.

- Dynamical model of the HJS. We define $p(\beta_t^q | \beta_{t-1}^q, x_t^q) =$ $p(\boldsymbol{\beta}_t^q | \boldsymbol{\beta}_{t-1}^q) p(\boldsymbol{\beta}_t^q | \boldsymbol{x}_t^q)$, where $p(\boldsymbol{\beta}_t^q | \boldsymbol{\beta}_{t-1}^q)$ is modelled as a gaussian noise and $p(\boldsymbol{\beta}_t^q | \boldsymbol{x}_t^q)$ models the likelihood of certain illumination conditions given a location in the scene.
- Building up an illumination map. The prior $p(\beta_t^q | x_t^q)$ is provided by the map and limits the number of candidate templates.

TRACKING MULTIPLE PEOPLE WITH ILLUMINATION MAPS Gloria Zen, Oswald Lanz, Stefano Messelodi, Elisa Ricci

{gzen,lanz,messelod,eliricci}@fbk.eu

- **Color-based tracking**: cues other than color (motion, edges or speech) are not always reliable; color histograms are sensitive to illumination.
- Our approach: (i) joint estimation of the position of the target and its illumination condition within a Bayesian framework, (ii) implement
- **Experiments**. We tested our method on two different scenarios: our laboratory (LAB) and a public dataset (PETS2007).

CREATING THE ILLUMINATION MAP

The map is obtained with a **hierarchical MRF** where:

- hidden nodes correspond to cells in the room. The illumination coefficients $\beta = (\beta^r, \beta^g, \beta^b)$ are the hidden variables.
- observations O_i associated to the i-th node are histograms collected for different targets during a time interval Δ_t . A clustering method is applied to the collected histograms to reduce the effect of noisy observations.
- the likelihood $\phi_i(\boldsymbol{\beta}_i, \boldsymbol{O}_i)$ for node *i* identify the $\boldsymbol{\beta}$ which better explains the observation O_i .
- The pairwise potentials $\psi_{ij}(\beta_i, \beta_j)$ enforce the fact that neighboring cells should have similar illumination conditions.

Efficient Inference with High Order $\phi_i()$

- Inference with sum-product belief propagation is computationally costly, $\mathcal{O}(V\Gamma^2) = \mathcal{O}(V\ell^6)$, with V the number of nodes, Γ and ℓ respectively the label space of β and β^c .
- The adoption of a **decomposed model** [2] reduces the cost to $\mathcal{O}(V\ell^3).$
- A novel message passing scheme based on Taylor series reduces the cost to $\mathcal{O}(3V\ell^2)$.

 $\mathbf{b} \phi(\boldsymbol{\beta}_k)$

RESULTS

LAB. Experimental results show that tracking with our method HJS- β allows to follow targets when subject to strong illumination changes, while adopting a β -map reduces the risk of drifting.

The quantitative results (F-measure) calculated for 6 video sequences are reported in the table.

	s1	s2	s3	s4	s5	$\mathbf{s6}$
n^{o} targets	1	1	2	2	3	3
HJS	0.35	0.58	0.62	0.68	0.55	0.36
$HJS-\beta-map$	0.60	0.67	0.70	0.73	0.74	0.76

PETS2007. The scenario presents strongly non-homogeneous and time-varying illumination conditions. Results show that collected information about lighting from "easy-to-track" targets can be used to build the map and track more challenging targets.

Supplementary materials of this work can be found at: http://tev.fbk.eu/people/ricci/illumination_map.html.

REFERENCES

- 28(9):1436-1449, 2006.
- for non-rigid image matching In CVPR'07.
- [3] G. Finlayson, M. Drew, B. Funt Diagonal transforms suffice for color constancy In *ICCV*, 1993.

[1] O. Lanz Approximate bayesian multibody tracking In IEEE Trans. PAMI,

[2] A. Shekhovtsov, I. Kovtun, and V. Hlavac Efficient MRF deformation model