

$\begin{array}{c} UNSUPERVISED \ DOMAIN \ ADAPTATION \ FOR \\ PERSONALIZED \ FACIAL \ EMOTION \ RECOGNITION \\ Gloria \ Zen^1, \ Enver \ Sangineto^1, \ Elisa \ Ricci^2, \ Nicu \ Sebe^1 \end{array}$

 1 {zen,sangineto,sebe}@disi.unitn.it 2 eliricci@fbk.eu

MOTIVATIONS AND GOALS

- Human expressions like pain or happiness can be exhibited differently, depending on the individual's appearance or personality. Previous works have shown that **person-specific** models are **advantageous** with respect to generic ones for recognizing facial expressions of new users added to the gallery set.
- Our goal is to obtain a personalized classifier θ_t for a new user without acquiring labeled data.
- Unsupervised methods for domain adaptation usually rely on re-weighting source samples and retraining the classifier, which is a **time consuming** process. In some case scenarios, excessive waiting time may negatively affect

LEARNING FROM DISTRIBUTIONS

The **mapping function** $f : \mathcal{P} \to \Theta$ can be defined as a set of parameters $\pi_k = (\mathbf{b}_k, c_k):$ $\widehat{f}_k(X) = \langle \phi_k(X), \mathbf{b}_k \rangle + c_k$ (1)

where $\phi_k(X)$ is a nonlinear mapping of X to a higher-dimensional space. In turn π_k can be found by minimizing:

$$\min_{\boldsymbol{\pi}} \frac{1}{2} ||\boldsymbol{b}_k||^2 + \lambda_E \sum_{i=1}^N |\boldsymbol{\theta}_{ik} - \hat{f}_{\boldsymbol{\pi}}(Z_i)|_{\epsilon}$$
(2)

Eq. (2) can be transformed into the dual problem:

user experience quality. We propose a personalization approach which is **drastically faster** w.r.t. related works.

- We show how θ_t can be accurately and efficiently inferred exploiting the similarity between the data distribution of the target user and the distributions from other subjects with known θ_i.
- The intuition is that, despite the inter-subject variability, knowledge can be transferred among individuals showing similar behavioral patterns.

$$\max_{\{\beta_{i}^{k}\}} -\frac{1}{2} \sum_{i,l=1}^{N} \beta_{i}^{k} \beta_{l}^{k} \kappa(Z_{i}, Z_{l}) + \sum_{i=1}^{N} \boldsymbol{\theta}_{ik} \beta_{i}^{k} - \epsilon \sum_{i=1}^{N} |\beta_{i}^{k}|$$
(3)

where $Z^t = X^t$ for the new unseen target users, and $Z_i^s = V_i = \{\mathbf{v}_j\}_{j=1}^{m_i}$, i.e. the Support Vectors associated with $\boldsymbol{\theta}_i$ $(V_i \subseteq X_i^s)$.

Results

• Performances on Action Unit Detection (CK+ dataset) measured in AUC:

AU	SVM	KMM [1]	TSVM [2]	DASVM [3]	${ m STM}$ [4]	TPT [6]	SVTPT Allr	$\begin{array}{c} \text{SVTPT} \\ \text{SVs} \end{array}$
1	79.8	68.9	69.9	72.6	88.9	88.2	87.8	89.6
2	90.8	73.5	69.3	71.0	87.5	92.6	92.8	93.9
4	74.8	62.2	63.4	79.9	81.1	84.3	84.5	88.6
6	89.7	87.7	61.5	94.7	94.0	91.7	91.1	91.5
12	88.1	89.5	76.0	95.5	92.8	97.1	96.3	97.5
17	90.3	66.6	73.1	94.7	96.0	94.3	94.4	94.1
Avg	85.6	74.7	68.7	83.1	90.1	91.3	91.3	92.7

• Performances on Pain Facial Expression Recognition (UNBC-MSPEAD dataset) measured in AUC:

SVM	TTA	TSVM	STM	TPT	SVTPT	\mathbf{SVTPT}
	[5]	[2]	[4]	[6]	All	SVs
75.6	76.5	69.8	76.8	76.7	76.7	78.4

SV-BASED TRANSDUCTIVE PARAMETER TRANSFER (SVTPT)

Let X, Y be, respectively, a feature and a label space, with Y = {−1,1}.
We assume to have N labeled source datasets D^s₁, ..., D^s_N, D^s_i = {**x**^s_j, y^s_j}^{n^s_i}, and an unlabeled target dataset X^t = {**x**^t_j}^{n^t}_{j=1}
We assume that the vectors in **x**^{s,t} are generated by a marginal distribution

 $P_i^{\{s,t\}}$ defined on \mathcal{X} .

PERFORMANCE AT VARYING NUMBER OF SAMPLES

(Left) Performance of SVTPT on CK+ dataset at varying number of source users N. (Right) Performance of SVTPT on UNBC-MSPEAD dataset at varying number of target samples n_t .

Performances and Computational Costs

The approach we propose is based on three main steps:

- 1. A set of source-specific classifiers $\boldsymbol{\theta}_i^s$ is learned for each user
- 2. A regression algorithm is adopted to learn the relation between the marginal distributions P_i^s and the source classifiers' parameter vectors $\boldsymbol{\theta}_i^s$.
- 3. The desired target classifier is obtained by applying the learned **distribution-to-classifier mapping function** and using as input the data points of the new target user.

KERNEL ESTIMATION

Density Estimate-based Kernel. A kernel measuring the similarity of two distributions is defined as follows:

$$\kappa_{DE}(X_i, X_j) = \frac{1}{nm} \sum_{p=1}^n \sum_{q=1}^m \kappa_{\mathcal{X}}(\mathbf{x}_p, \mathbf{x}_q),$$

UNBC-MSPEAD dataset. Performance (AUC) vs average time (in logarithmic scale) for training a target classifier with different unsupervised personalization methods.

References

- [1] A. Gretton, et al. Dataset shift in machine learning In MIT press Cambridge,, 2009.
- [2] J. Chen, X. Liu and P. Tu, A. Aragones. Learning person-specific models for facial expression and action unit recognition In *Pattern Recognition Letters*, 2013.
- [3] L. Bruzzone, M. Marconcini Domain adaptation problems: A DASVM classification technique and a circular validation strategy In PAMI, 2010
- [4] W.S. Chu, F. De La Torre, J.F. Cohn. Selective transfer machine for personalized facial action unit detection In CVPR, 2013.
- [5] Joachins, Thursten Transductive inference for text classification using support vector machines In *ICML*, 1999.
- [6] E. Sangineto, G. Zen, E. Ricci, N. Sebe. We are all Not Equal: Personalized Models for Facial Expression Analysis via Transductive Parameter Transfer In ACM MM (long paper), 2014.