UNSUPERVISED DOMAIN ADAPTATION FOR
PERSONALIZED FACIAL EMOTION RECOGNITION

Gloria Zen', Enver Sangineto!, Elisa Ricci?, Nicu Sebe?

-1 i1
,
.__l-;
Tm

T
2
UNIVERSITA DEGLI FONDAZION

STUDI DI TRENTO ] 9 BRUNO |
{zen,sangineto,sebet@disi.unitn. it eliricci@fbk. eu |

LEARNING FROM DISTRIBUTIONS

The mapping function f : P — © can be defined as a set of parameters
p— b . ~

i = (Bks ) fi(X) = (¢r(X), br) + ck (1)

where ¢ (X) is a nonlinear mapping of X to a higher-dimensional space.
In turn 7tx can be found by minimizing:

MOTIVATIONS AND (GOALS

e¢ Human expressions like pain or happiness can be exhibited differently, de-
pending on the individual’s appearance or personality. Previous works have
shown that person-specific models are advantageous with respect to
generic ones for recognizing facial expressions of new users added to the
cgallery set.

e Our goal is to obtain a personalized classifier 8; for a new user without
acquiring labeled data.

e Unsupervised methods for domain adaptation usually rely on re-weighting
source samples and retraining the classifier, which is a time consuming

process. In some case scenarios, excessive waiting time may negatively affect

Eq. (2) can be transformed into the dual problem:
user experience quality. We propose a personalization approach which 1
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where Z° = X" for the new unseen target users, and Z; = V; = {v;}/, | i.e.
the Support Vectors associated with 8; (V; C X}).

RESULTS
e Performances on Action Unit Detection (CK+ dataset) measured in AUC:
AU SVM  KMM TSVM DASVM STM TPT SVTPT  SVTPT
1] 2] 3] 4] 6] Allr SVs
1 79.8 68.9 69.9 72.6 88.9 88.2 87.8 89.6
2 90.8 73.9 69.3 71.0 87.9 92.6 92.8 93.9
4 74.8 62.2 63.4 79.9 81.1 34.3 34.5 38.6
6 89.7 7.7 61.5 94.7 94.0 91.7 91.1 91.5
12 38.1 39.5 76.0 95.5 92.8 97.1 96.3 97.5
17 90.3 66.6 73.1 94.7 96.0 94.3 94.4 94.1
Avg 35.6 74.7 68.7 383.1 90.1 91.3 91.3 92.7

e We show how 0; can be accurately and efficiently inferred exploiting the
similarity between the data distribution of the target user and the dis-
tributions from other subjects with known 6,;.
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e Performances on Pain Facial Expression Recognition (UNBC-MSPEAD
dataset) measured in AUC:

e

e The intuition is that, despite the inter-subject variability, knowledge can be SVM TTA TSVM STM | TPT | SVITPT SVTPT
transferred among individuals showing similar behavioral patterns. 5] 2] 4] 6] All SVs
75.6 76.5 69.8 76.8 76.7 76.7 78.4

SV-BASED TRANSDUCTIVE PARAMETER TRANSFER (SVTPT) PERFORMANCE AT VARYING NUMBER OF SAMPLES

o Let X', ) be, respectively, a feature and a label space, with ) = {—1,1}.

o We assume to have N labeled source datasets D7, ..., D}, D] = {x], yf}n’b 100} }' 7B [
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and an unlabeled target dataset X' = {x} };’il 0 |

e We assume that the vectors in x>

; are generated by a marginal distribution
Pl*" defined on X.
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UNBC-MSPEAD dataset. Performance (AUC) vs average time (in logarith-
mic scale) for training a target classifier with different unsupervised person-

The approach we propose is based on three main steps:

1. A set of source-specific classifiers 0; is learned for each user

2. A regression algorithm is adopted to learn the relation between the
marginal distributions P; and the source classifiers’ parameter vectors

0.

alization methods.
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