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ABSTRACT

The way in which human beings express emotions depends
on their specific personality and cultural background. As
a consequence, person independent facial expression classi-
fiers usually fail to accurately recognize emotions which vary
between different individuals. On the other hand, train-
ing a person-specific classifier for each new user is a time
consuming activity which involves collecting hundreds of la-
beled samples. In this paper we present a personalization
approach in which only unlabeled target-specific data are re-
quired. The method is based on our previous paper [20] in
which a regression framework is proposed to learn the re-
lation between the user’s specific sample distribution and
the parameters of her/his classifier. Once this relation is
learned, a target classifier can be constructed using only the
new user’s sample distribution to transfer the personalized
parameters. The novelty of this paper with respect to [20]
is the introduction of a new method to represent the source
sample distribution based on using only the Support Vec-
tors of the source classifiers. Moreover, we present here a
simplified regression framework which achieves the same or
even slightly superior experimental results with respect to
[20] but it is much easier to reproduce.

Categories and Subject Descriptors

I.2.10 [Vision and Scene Understanding]: [Video Anal-
ysis]; H.1.2 [User/Machine Systems]: [Human factors,
Human information processing]

General Terms

Human factors
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Facial Expression Recognition; Action Unit Detection; Un-
supervised Domain Adaptation
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Figure 1: Sample frames of spontaneous neutral
(odd rows) and painful (even rows) facial expres-
sions taken from the PAINFUL dataset. The frames
illustrate how human expressions like pain can be
exhibited in many different ways, depending on the
individual’s appearance or personality.

1. INTRODUCTION
There is a long debate in the psychological community on

the universality of emotions and on the impact of culture
and other environmental aspects on the way human beings
express their feelings [8]. Even if the degree of importance
of the environment is not yet clear, it is commonly accepted
that factors such as the cultural background, gender, age
or specific personality traits play a strong role in influenc-
ing the modalities and the intensity in which emotions are
shown by different people. For instance, the way in which
happiness or pain is expressed usually varies, on average,
between women and men, introvert and extrovert persons,
citizens of different countries, etc. On the other hand, this
large variability of behaviors is one of the reasons for which
common emotion recognition classifiers usually drop their
performance when tested with subjects not belonging to the
training set [23, 15]. However, collecting a large number of
user-specific labeled data for training a personalized classi-
fier is a time consuming and expensive activity and becomes
practically infeasible for easy-to-use Human Computer In-
terface (HCI) systems.

In this paper we focus on facial expression recognition,
which is one of the main modalities in which people ex-
press emotions [23] and we show how a user-specific clas-
sifier can be built using only unlabeled target data. The
method we propose does not make any assumption on the



specific features used to represent the emotions and on the
facial expression scenario we adopted in our experiments.
As a consequence, it can be applied to different input data
types (e.g., audio, accelerometer data, physiological signals,
text, etc.) as well as different verbal or non-verbal human
communication modalities (e.g. voice recognition, gesture
recognition, etc.).
Our idea is based on the framework proposed in [20],

where a regression function is learned which associates the
(unlabeled) distribution of the user’s data in the feature
space with the hyperplane parameters of her/his personal-
ized classifier. More specifically, given a set of N source
users, with their associated labeled training samples, a set
of corresponding N source linear classifiers (linear SVMs)
C1, ..., CN is learned. Each classifier Ci is defined by its
decision hyperplane (wi, bi). Then, a regression function
f(·) is trained which relates the shape of the unlabeled data
distribution of the i-th source user with her/his specific hy-
perplane (wi, bi). Once f(·) is learned, labeled data are not
necessary any more. Hence, given a new target user and
her/his unlabeled collection of samples, applying f(·) to the
new data distribution, the target-specific classifier’s param-
eters can be obtained.
In this paper we build on this idea and we make the fol-

lowing contributions. (1) We simplify the whole framework,
e.g., using a scalar Support Vector Regression (SVR) for
learning f(·) instead of the Multi-output SVR proposed in
[20], which makes the approach easier to be reproduced.
(2) More importantly, restricting the chosen classifiers to
be linear SVMs, we propose to represent the source data
distributions by means of the corresponding Support Vec-
tors, which are related with (wi, bi) via the Karush-Kuhn-
Tucker (KKT) condition. This makes stronger the geometric
relation between (wi, bi) and our non-parametric represen-
tation of the source data. We show in Sec. 4 that, using
the proposed Support Vector-based representation, we ob-
tain comparable or even better results than [20] on the same
benchmarks.
Following [20], we tested our method on different bench-

marks and in different application scenarios. In the first sce-
nario we trained a patch-based facial expression recognition
system based on Local Binary Pattern Histograms (LBPH)
[1] and we used the recently proposed PAINFUL dataset
[14], which collects videos of real patients with shoulder in-
juries. The way and the intensity in which the patients
spontaneously show pain while performing motion activities
largely varies between one person and the other (see Fig. 1).
This is witnessed by the experimental results reported in
[10], where the authors use the same benchmark and show
that person-dependent testing (no training samples of the
testing subject used for training) achieves a largely lower
performance than a person-independent cross validation. In
the second set of experiments, we used the more commonly
adopted Extended Cohn Kanade (CK+) face dataset [13]
and we trained an Action Unit detection system based on
facial landmark detection and SIFT extraction. Even if the
tasks and the adopted features in the two scenarios are dif-
ferent, we show in Sec. 4 that our approach is able to out-
perform both a non-personalized classifier and other state-
of-the-art unsupervised personalization methods. More im-
portantly, our training strategy is significantly faster (and
simpler to implement) than other domain adaptation ap-
proaches, most of which are based on time consuming re-

training strategies. In Sec. 4 we show that we can compute
the target classifier in significantly shorter time, and we be-
lieve that this is a important aspect for user personalization
in real HCI applications.

2. RELATED WORK
In this section we briefly review the literature related to

both single-frame (static) facial expression analysis and do-
main adaptation/transfer learning techniques.

Single Frame Facial Expression Analysis. Frame-
level methods to detect AU occurrence and facial expressions
(e.g. happiness, sadness, fear) analyze individual frames [15,
23]. This is typically done first performing face registration,
then extracting geometric or appearance features represent-
ing each frame, and finally feeding the visual descriptors into
static classifiers (e.g. SVM, Boosting, Random Forests).
Face registration is commonly achieved through the local-
ization of anatomically salient facial points [19], while in
the feature extraction phase both geometric descriptors (e.g.
containing information of landmark locations) and appear-
ance features capturing texture changes (e.g. LBPH, SIFT)
are typically used.

While state-of-the-art frame-level approaches achieve very
accurate recognition in controlled conditions (i.e. frontal
face images and posed emotions), the performance signifi-
cantly degrade in more realistic settings. To address this
issue, recent works have focused on recognizing spontaneous
facial emotions such as pain [7, 12, 21] and on coping with
the challenges of person-specific facial appearance variabil-
ity [18]. However, most of these works are based on generic
detectors, i.e. on classifiers learned with a dataset which
is supposed to be representative of all the possible sources
of variability (acquisition conditions, differences among in-
dividuals, etc.). Unfortunately, having at disposal only
datasets of few thousands of images, generalization to ar-
bitrary people appearance and environmental conditions is
hard to achieve. In particular, to cope with the issue of facial
appearance variability among different people, few recent
works have proposed domain adaptation approaches which
leverage from unlabeled data depicting the user of interest
to learn personalized classifiers. For instance, in [4] an ex-
tension of the popular AdaBoost algorithm is proposed for
creating user-specific pain recognition models. In [5] an ap-
proach based on Kernel Mean Matching [9] named Selective
Transfer Machine (STM) is presented for person-specific AU
detection. While very accurate recognition results are ob-
tained, STM is very slow at training time. On the other
hand to be used in many real world applications, such HCI
systems, adaptation algorithms are required to be computa-
tionally efficient. Our method is mainly motivated by this
need and our experiments (reported in Sec. 4) confirm that
it is much faster than [5], being its accuracy comparable or
even slightly better.

Transfer learning. Domain adaptation and transfer
learning approaches have recently become popular as a
means to alleviate the problem of the scarceness of (an-
notated) training samples for the target domain. In [16]
a taxonomy of domain adaptation approaches is presented.
According to the type of information which is transferred
from the source to the target domain, these methods can
be categorized into instance-transfer, features-transfer and
parameter-transfer approaches.



Feature-transfer involves finding a shared feature space
in which both the source and target data are represented.
For instance, in [6] the input features space is augmented
originating in a novel descriptor composed of a shared, a
source-specific and a target-specific part.
Parameter transfer techniques aim to discover a set of

shared parameters or priors between the source and the tar-
get models. In Adaptive-SVMs [22] the classifier parameters
are obtained training an SVM on the target domain and im-
posing a regularization term which forces these parameters
to be similar to the previously learned source task classi-
fier(s). However, the parameter transfer approaches usually
require labeled target data. In our facial expression analysis
scenario, this means annotated data for every new user (i.e.
users not belonging to the training set) and it is practically
infeasible in most applications.
When the target data are unlabeled, instance-transfer ap-

proaches are commonly adopted. For instance, in [9] a sam-
ple reweighting algorithm is introduced. Gretton et al. pro-
pose to compare the centroids of the source and the tar-
get distributions and to estimate the weights of the source
samples in order to reduce this discrepancy. These weights
are then used to assign importance to the source samples
when training a model for the target domain. The approach
presented in [5] develops from a similar idea. The main
drawback of these methods is that computing the difference
between the means of the source and the target data distri-
butions in the Reproducing Kernel Hilbert Space may poorly
approximate the real distance between distributions. In this
paper we circumvent this problem by learning the relation
between the “shape” of each user-specific data distribution
and the corresponding classifier parameters.

3. REGRESSION-BASED PARAMETER

TRANSFER
In this section we present our Support Vector-based

Transductive Parameter Transfer (SVTPT) method. This
approach is a general framework and it is independent from
the types of features and from the applicative scenario. In
Sec. 4 we show how this framework can be instantiated with
different input modalities (visual descriptors) and classifica-
tion tasks.
Let X ,Y be, respectively, a feature space and a label

space. In this paper we consider Y = {−1, 1} but generaliz-
ing our approach to a multiclass setting is straightforward.
We assume that N labeled source datasets Ds

1, ..., D
s
N , Ds

i =

{xs
j , y

s
j}

ns

i

j=1, and an unlabeled target dataset Xt = {xt
j}

nt

j=1,

xs
j ,x

t
j ∈ X , ys

j ∈ Y, are available. Moreover, let denote

Xs
i = {xs

j}
ns

i

j=1 the set of points in Ds
i obtained by discarding

the label information. Ds
i contains all the training samples

specific to the i-th source person, while Xt is the (unlabeled)
set of samples of the target individual for whom we aim to
construct a personalized classifier.
We assume that the vectors in Xs

i are generated by a
marginal distribution P s

i defined on X and similarly the
vectors Xt are generated by P t. We generally assume that:
P t 6= P s

i and P s
i 6= P s

j (1 ≤ i, j ≤ N , i 6= j). Finally, we
call P the space of all the possible distributions on X and
we assume that P t, P s

i are drawn from P according to the
meta-distribution Π, i.e. P t, P s

i ∼ Π (1 ≤ i ≤ N).
Our goal is to learn a classifier on the target data Xt with-

out acquiring labeled information. The approach we propose

is based on three main phases (Fig. 2). First, a set of source-
specific classifiers is learned, one for each training set Ds

i . In
the second phase a regression algorithm is adopted in order
to learn the relation between the marginal distributions P s

i

and the source classifiers’ parameter vectors θi. Finally,
the desired target classifier θ

t is obtained by applying the
learned distribution-to-classifier mapping and using as input
the distribution P t. In the following, the three phases are
described in details.

Source Training Phase 1. In the first phase, each
source dataset Ds

i is used to train a classifier solving an
optimization problem as:

θi = min
θ∈Θ

R(θ) + λLL(θ, D
s
i ) (1)

where θi is the parameter vector associated to the learned
classifier, Θ is the parameter space, R(·) a regularizer and
L(·) is the empirical risk weighted with λL. Each θi is a
personalized classifier (called “ideal” classifier in [5]) because
it was trained using the user specific data Ds

i . Specifically,
in this paper we use a set of linear SVM classifiers, thus
θi = [w′

i, bi], wi ∈ IRM , bi ∈ IR, defines a hyperplane in the
feature space X ≡ IRM (see Fig. 2) and it can be estimated
by solving:

min
w,b

1

2
||w||2 + λL

ns

i∑

j=1

l(w′xs
j + b, y

s
j ) (2)

where l(·) is the hinge loss.
Source Training Phase 2. In the second phase, we

use a regression approach to learn a mapping f : P → Θ .
The intuition here is that each hyperplane, defined by θi,
depends on the distribution P s

i generating the data points
Xs

i . Thus, if using the source data we are able to learn the
relationship between the “shape” of the underlying distribu-
tion and its corresponding hyperplane, then, for computing
the optimal hyperplane on the target data, we do not need
label information any more and we can simply apply the
learned mapping f(·), i.e. θt = f(P t).

Of course, we do not know P s
i (1 ≤ i ≤ N) neither P t,

thus we need to approximate both types of distributions us-
ing empirical data at disposal. P t can be approximated us-
ing Xt. Similarly, P s

i can be approximated using Xs
i . How-

ever, P s
i can be approximated also using only the Support

Vectors obtained solving (2) for the i-th source classification
task. Let Vi = {vj}

mi

j=1 be the Support Vectors associated
with θi (Vi ⊆ Xs

i ). The distribution generating Vi is gener-
ally different from the distribution generating Xs

i . In fact Vi

does not include those points which are far from the decision
hyperplane. Thus approximating P s

i using Vi introduces an
error. Anyway, using Vi instead of Xs

i brings two advan-
tages for our regression framework. The first is that there is
a well-known relation between the Support Vectors and the
decision hyperplane, given by the KKT condition:

wi =

mi∑

j=1

αjyjvj , (3)

where yj is the label associated with vj and αj the cor-
responding Lagrange multiplier obtained solving (2). Note
that we do not have labels for the target task, thus (3) can-
not be directly used to compute wt. The KKT condition
guarantees the existence of a relation between Vi and θi



Figure 2: Overview of the training phase. Left: different linear classifiers are learned using labeled source
datasets. The goal is to learn a target classifier θ

t using unlabeled samples. Middle: the source kernel
matrix Ks and the target kernel vector Kt are computed (see Algorithm 1). Right: θ

t (black line) is obtained
applying the regression function. See the text for more details.

which makes the estimate of our regression function more
robust.
The second advantage in using Vi in place of Xs

i to ap-
proximate P s

i is the speed-up and the storage saving we can
obtain being usually mi < ns

i . We show in Sec. 4 that in-
deed using Vi we obtain slightly more accurate results with
a faster training phase.
Let Zi be the set of points chosen to approximate P s

i ,
where either Zi = Vi or Zi = Xs

i . Given a training set
T = {(Zi,θi)}

N
i=1 we propose to learn a mapping:

f̂ : 2X → Θ (4)

which approximates f(·). The function f̂(·) is a vector-
valued set function, i.e. a function which takes as input
a set of points X (X ⊆ X ) and outputs a vector θ = [w′, b].

If X ≡ IRM , i.e. θ is a M + 1 dimensional vector, f̂(·) can

be learned using M+1 independent scalar regressors f̂k(X):

f̂(X) = (f̂1(X), ..., f̂k(X), ..., f̂M+1(X))′ (5)

We compute each f̂k(·) using the well-known ǫ-insensitive
Support Vector Regression framework proposed by Vapnik,
which, in our setting, can be formulated as follows. Each

f̂k(·) (1 ≤ k ≤ M + 1) is defined by a set of parameters
πk = (bk, ck):

f̂k(X) = 〈φk(X),bk〉+ ck, (6)

where bk and ck is the weight vector and the bias, respec-
tively, φk(X) is a nonlinear mapping of X to a higher-
dimensional space and 〈X1, X2〉 is a scalar product defined
in such a space. In turn πk can be found by minimizing:

min
π

1

2
||bk||

2 + λE

N∑

i=1

|θik − f̂π(Zi)|ǫ (7)

where θik is the scalar value corresponding to the k-th di-
mension of θi, (Zi,θi) ∈ T , λE is a weight for the empir-
ical risk and |e|ǫ = max(0, |e| − ǫ) is the ǫ-insensitive loss
function. The parameter ǫ regulates the accuracy of the
approximation.
Eq. (7) can be transformed into the dual problem:

max
{βk

i
}
−
1

2

N∑

i,l=1

β
k
i β

k
l κ(Zi, Zl) +

N∑

i=1

θikβ
k
i − ǫ

N∑

i=1

|βk
i | (8)

such that:

N∑

i=1

β
k
i = 0, |βk

i | ≤ λE (k = 1, ...,M + 1). (9)

In (8) {βk
i } is the set of Lagrange multipliers and κ(Zi, Zl) =

〈Zi, Zl〉 is the kernel function. Note that the same kernel can
be used for all k = 1, ...M + 1, since κ(Zi, Zl) estimates the
similarity between Zi and Zl which is independent from the
value of k. In this dual form, (6) becomes:

f̂k(X) =
N∑

i=1

β
k
i κ(Zi, X) + ck. (10)

From the above formulas, it is clear that both when we

compute the parameters of the regression function f̂k(·) us-
ing (8)-(9) and when this function is applied to a new input

using (10), i.e. f̂k(X
t), the only thing we need is the ker-

nel function κ(·, ·), which must be defined for every pair
of subsets of X , while the direct definition of the mapping
functions (φk(X), k = 1, ...,M + 1) is no more necessary.

It is important to note that κ(·, ·) is defined on sets of
points and not on feature vectors (i.e., single points) as com-
mon kernel functions are. In other words, we need a kernel
for estimating the similarity between distributions empiri-
cally represented by a set of data points. To this aim we use
the non-parametric distribution kernel recently proposed in
[2]. This kernel is based on a (single point) Density Estimate
kernel and it is defined as follows:

κ(Xi, Xl) =
1

nm

n∑

p=1

m∑

q=1

κX (xp,xq), (11)

where Xi = {xp}
n
p=1, Xl = {xq}

m
q=1 and κX (·, ·) is a nor-

malized Gaussian kernel defined on the feature space X .

Target Training Phase. Finally, once f̂k(·) is computed
using (8)-(9) for every k = 1, ...,M + 1, in the last phase of

our method, we plug (10) into (5) and we apply f̂(·) to the
target data set Xt, obtaining the desired parameter vector
of the target classifier:

θ
t = f̂(Xt). (12)

In Algorithm 1 we summarize the whole training proce-
dure. Note that the two source training phases need to be
computed only once using all the source datasets. Then,
for every new target dataset, only the target training phase



Algorithm 1 The proposed SVTPT approach.

Input: The sets Ds
1, ..., D

s
N , Xt and the regularization

parameters λL, λE , ǫ.

Source Training Phase 1:
Compute {θi = (wi, bi)}

N
i=1 using (2).

Source Training Phase 2:
Create a training set T = {Zi,θi}

N
i=1,

where Zi = Vi or Zi = Xs
i .

Compute the source kernel matrix Ks, Ks
il = κ(Zi, Zl)

using (11)
Given Ks, T , for every k = 1, ...,M + 1 solve (8)-(9).
Target Training Phase:
Compute the target kernel vector Kt, Kt

i = κ(Zi, X
t)

using (11)

Given Kt, compute (wt, bt) = f̂(Xt) using (10) and (5).

Output: wt, bt

Figure 3: Sample frames of the CK+ dataset. The
green rectangles show the cropped part of the im-
age and the dots are the detected facial landmarks
(better seen at a high magnification).

needs to be repeated. Thus, when a new target user is in-
troduced into the system, computational times for domain
adaptation only depend on the target training phase. Fi-
nally, note that all the optimization problems involved in
our approach (i.e. (2) and (8)) can be computed with any
standard SVM solver. We used the well know LIBSVM li-
brary. The whole procedure is shown in Fig. 2.
Testing phase. Once θ

t has been computed, the test
procedure is standard as in classification with linear SVMs.
Given a new target feature vector x, the corresponding label
y is predicted using: y = sign((wt)′x+ bt).

3.1 Discussion
In this paper we propose to learn the relation between

the “shape” of each user-specific data distribution and the
corresponding classifier parameters. It is worth noting that,
generally speaking, the parameters of a linear classifier (e.g.,
θi or θ

t) depend not only on the marginal distribution (P s
i or

P t) but also on the relative distributions of the positives and
negatives inside P s

i and P t. However, since the classification
task is the same for all the users, our assumption is that this
relative distributions of positives and negatives inside every
user’s data is relatively constant and can be learned using
source users. We are currently working on extending the
experiments with other datasets and our finding is that, as
far as data are sufficiently linearly separable, our assumption
holds. Representing P s

i using Support Vectors helps because
the classifier parameters are related to the Support Vectors
via the KKT condition.

4. EXPERIMENTS
In this section we present two series of experiments to

demonstrate the effectiveness of the proposed SVTPT ap-
proach in two different applications: AU detection and pain
recognition. We deliberately choose these in order to com-
pare SVTPT with our previous work [20] and with the only
two other transductive domain adaptation methods for facial
expression analysis we are aware of: STM [5] and Transduc-
tive AdaBoost (TA) [4]. For the sake of comparison, we
adopt the same datasets and features presented in [20, 4, 5].
The performances are evaluated using the F1 score, defined
as F1 = 2·recall·precision

recall+precision
, and the Area Under ROC Curve

(AUC). Note that the results reported for the other meth-
ods we compare with and for our previous work [20] were
previously published in [20]. In this paper we are simply
restating them for ease of comparison between methods.

4.1 Facial Action Unit Detection

4.1.1 Experimental setup

In this series of experiments we consider the Extended
Cohn-Kanade (CK+)1 dataset [13]. CK+ contains a set of
frontal faces depicting spontaneous and posed expressions.
The dataset includes 593 videos from 123 users. The number
of videos per user ranges from 1 to 11. The video length
varies from 4 to 71 frames. Sample frames are shown in
Fig. 3.

We followed the same experimental protocol adopted in
[5, 20], implementing the same feature extraction pipeline.
First, for each frame the face and the facial landmarks are
detected, then the face is aligned, cropped and resized to
200×200 pixels. For this pre-processing step, we use the
code of [5], available at the author’s website2. Subsequently,
we select 16 landmarks from which we extract SIFT descrip-
tors using OpenCV from 36×36 pixel regions around them.
Finally, the descriptors are concatenated and dimensionality
is reduced using Principal Component Analysis. We retain
90% of the energy, resulting in feature vectors of size 51. As
discussed in [20], we select the most frequent AUs and each
AU detection is considered as an independent binary clas-
sification problem. Following [5, 20], our experiments are
conducted using a leave-one-subject-out evaluation scheme.

4.1.2 Results

We compare our approach with a generic SVM classi-
fier learned on the entire source data, Transductive SVM
(TSVM) [11] and domain adaptation-based methods: Ker-
nel Mean Matching (KMM) [9], Domain Adaptation SVM
(DASVM) [3] and STM [5]. We also compare with the Trans-
ductive Parameter Transfer (TPT) in [20] when the Density
Estimate Kernel is used for comparing data distributions.
The values concerning the performance of the baseline meth-
ods are taken from [5, 20]. The SVTPT parameters (Algo-
rithm 1) have been set with cross-validation. The results are
shown in Tables 1 and 2. For the proposed SVTPT method
SVs means that we use only the support vectors (Zi = Vi)
for computing Ks and Kt (see Algorithm 1). We also re-
port the results obtained when all the source data points are
used, i.e. Zi = Xs

i (All).

1http://www.pitt.edu/∼emotion/ck-spread.htm
2http://humansensing.cs.cmu.edu/intraface/



Table 1: Performance on CK+ dataset. Comparison
of different methods based on F1 Score.

AU SVM TSVM KMM DASVM STM TPT SVTPT
[9] [11] [3] [5] [20] All SVs

1 61.1 56.8 44.9 57.7 74.0 74.4 73.2 74.9
2 73.5 59.8 50.8 64.3 76.2 84.2 81.7 82.4
4 62.7 51.9 52.3 57.7 69.1 66.3 64.5 74.2
6 75.7 47.8 70.1 68.2 79.6 74.8 77.2 74.3
12 76.7 59.6 74.5 59.0 77.2 85.1 83.0 84.6
17 76.0 61.7 53.2 81.4 84.3 76.1 79.0 84.3
Avg 70.9 56.3 57.6 64.7 74.8 76.8 76.7 79.1

Table 2: Performance on CK+ dataset. Comparison
of different methods based on AUC.

AU SVM TSVM KMM DASVM STM TPT SVTPT
[9] [11] [3] [5] [20] All SVs

1 79.8 69.9 68.9 72.6 88.9 88.2 87.8 89.6
2 90.8 69.3 73.5 71.0 87.5 92.6 92.8 93.9
4 74.8 63.4 62.2 79.9 81.1 84.3 84.5 88.6
6 89.7 60.5 87.7 94.7 94.0 91.7 91.1 91.5
12 88.1 76.0 89.5 95.5 92.8 97.1 96.3 97.5
17 90.3 73.1 66.6 94.7 96.0 94.3 94.4 94.1
Avg 85.6 68.7 74.7 83.1 90.1 91.3 91.3 92.7

When support vectors are used for approximating the
source data distributions, our approach outperforms all the
other methods considering both the AUC and the F1 score.
In particular, SVTPT outperforms the TPT method pre-
sented in [20]. This result confirms the intuition that using
only Support Vectors for representing the source distribu-
tions is more effective than using all the data points (see
Sec. 3). In other words, considering only SVs allows to ex-
clude data points which are far away from the hyperplanes
and that could be misleading in an unsupervised domain
adaptation process. In this sense, the proposed approach
comes as an improvement of the method presented in [20].
Among the other baselines, TSVM performs poorly. We as-
cribe this to the fact that all the source samples are retained
during training and the resulting classifier can be wrongly bi-
ased when samples from irrelevant individuals are included.
KMM, DASVM and STM, instead, re-weight and possibly
retain only important data. Among them, STM is the most
successful. However, SVTPT and TPT achieve even better
performance than STM, probably due to a more effective
representation of similarity between data distributions.

4.2 Pain Expression Recognition

4.2.1 Experimental Setup

The PAINFUL3 dataset is part of the UNBC-McMaster
Shoulder Pain Expression Archive Database [14] and is com-
posed of 200 video sequences of 25 patients with shoulder
injuries. The videos depicts the patients while performing a
series of active and passive range-of-motion tests with either
their affected limb or the unaffected one. The facial expres-
sions of the patients are fully spontaneous. The annotation
of the video is on a frame basis (48398 frames are labeled
by experts using the Prkachin and Solomon Pain Intensity,
PSPI, metric system [17]). Some frames are shown in Fig. 4.
To compare our results with [4, 20] we compute the same

features. For each frame we use the ground truth eye lo-
cations provided in the database to crop and warp the face
region into a 128× 128 pixel image. The resulting image is
divided into 8 × 8 blocks and LBPH features [1] are com-

3http://www.pitt.edu/∼emotion/um-spread.htm

Figure 4: Sample frames of the PAINFUL dataset.
Spontaneous facial expressions of patients under
shoulder mobility tests are shown.

Table 3: Performance on PAINFUL dataset, AUC.
(∗) Results obtained on 30% of data points, see text
for details.

AdaBoost TTA TSVM STM∗ TPT SVTPT SVTPT
[4] [4] [11] [5] [20] All SVs
76.9 76.5 69.8 76.8 76.7 76.7 78.4

puted. We adopt uniform LBPu2
8,1, where u2 means “uni-

form” and (8, 1) represents 8 sampling points on a circle of
radius 1. For each block a 59-dimensional feature vector
is obtained. These vectors are then concatenated resulting
into a descriptor of 8×8×59 = 3776 dimensions. For dimen-
sionality reduction Principal Component Analysis is applied
retaining 90% of the variance and obtaining for each frame
a feature vector of size 334.

Following [4, 20], our experiments are conducted using
a leave-one-subject-out evaluation scheme. However, since
there is no pain exhibited in the videos of one subject (i.e.
PSPI score is equal to 0 for all the frames), we excluded
the videos of this person from the experiments because he
cannot be used as a source. Hence, the final number of
subjects considered, both at training and at testing time, is
24. Nevertheless, using the non-pain user only as a target,
we got slightly better results.

4.2.2 Results

In order to allow a comparison of our results with [4, 20],
we evaluate the performance using AUC and we compare
against: a generic classifier (AdaBoost) trained using only
the source samples (no domain adaptation), Transductive
Transfer AdaBoost (TTA) [4], TSVM [11], STM [5] and TPT
with Density Estimate Kernel [20]. For TTA and AdaBoost
we report the performances published by Chen et al. in
[4], and for TPT we report the performances published in
[20], while for TSVM and STM we used the codes publicly
available4,5. Both for TSVM and STM and for TPT and
SVTPT, the system’s parameters have been set with cross-
validation. Table 3 reports the results. As in the case of
the CK+ dataset, our approach outperforms all the baseline
methods and, concerning SVTPT, a significant improvement
in terms of AUC is obtained in the SVs case. This confirms
again the efficiency of using SVs w.r.t. considering all the
data points in our learning from distribution framework, as
was initially proposed in [20]. Note that for the case of STM,
the results are reported using randomly subsampled 30% of
the data points for training. We stopped at this percentage
value because the computational time for training a classifier
on each subject was over 1 day (see Tab. 6 below) and the
time complexity growth is more than linear with respect to
the number of training points. Note that this computational

4http://svmlight.joachims.org/
5http://humansensing.cs.cmu.edu/software.html



Figure 5: PAINFUL dataset. Similarity of the classifiers θSV M
i and θSV TPT

i , with respect to the personalized

classifiers θi, i = 1, ..., 24, obtained respectively with SVM and our method (SVTPT) (see the text for details).

Table 4: PAINFUL dataset. (Upper part) Average
time cost for training a target classifier for different
methods. (Lower part) details on average time costs
for different phases of our method.

Method Data%
Variable Training Training

to be computed on source on target

SVM 100% θSV M 25’ -
TSVM 100% θTSV M - 1h 50’
STM 30% θSTM - > 1day
SVTPT All 100% θSV TPT 47.1” 0.8”
SVTPT SVs 100% θSV TPT 44.1” 0.5”

SVTPT

100% θi; i=1,..,N 37” -
100% Ks All 10” -
100% Ks SVs 7” -
100% βk

i ; 1≤i≤N; 1≤k≤M+1 0.1” -
100% Kt All - 0.8”
100% Kt SVs - 0.5”

time must be multiplied by 24, the number of leave-one-
subject-out cross validation iterations.
In the rest of the experiments, if not otherwise explicitly

stated, we refer as SVTPT to indicate our method when
training is performed using only Support Vectors (SVs). In
order to further validate our approach, in Fig. 5 we show the
similarity of the classifiers θCi (where: C ∈ {SVM,SV TPT})
with respect to the personalized classifiers θi for each of the
24 users of the PAINFUL dataset. The personalized clas-
sifiers θi are trained with labeled data points of only the
i-th user (see Eq.(2)). Conversely, each θSV TPT

i is obtained
with the proposed method, as output of our regression func-
tion, while θSV M

i is a generic classifier trained with all and
only the data points of the remaining 23 source users. The
similarity is computed as SC

i = exp(−||θCi − θi||2), thus the
larger its value, the more similar is the classifier to the per-
sonalized one. Fig. 5 shows that θSV TPT

i is closer to θi for
each of the 24 users of the PAINFUL dataset.
The last part of our experiments is dedicated to com-

pare SVTPT with respect to the state-of-the-art approaches
whose code is available on line (i.e. TSVM and STM) in
terms of computational times. In Fig. 6 we report the per-
formance versus the target training time cost of SVTPT and
the baseline methods. In [4] Chen et al. report the train-
ing time for TTA on PAINFUL (17.6 minutes) but they do
not mention the workstation they used, thus the results are
not directly comparable. Our experiments were run on a 4
Cores 2.40GHz CPU machine. It is clear from this plot that
both TSVM and STM do not scale well as the number of
training samples increases. For instance, using only 10% of
the source samples, TSVM needs 17 minutes on average for

Figure 6: PAINFUL dataset. Performance (AUC)
vs average time (in logarithmic scale) for training a
target classifier with different unsupervised person-
alization methods: (red) TSVM [11], (blue) STM [5]
and (green) SVTPT. Results for [5, 11] are reported
considering different percentage of source data sam-
ples. Our method allows the best performance in the
shortest time, considering 100% of the data points.

training a personalized classifier, STM 18 hours and SVTPT
only less than a second. Even if the accuracy of all the meth-
ods are comparable in this challenging dataset, our proposed
approach largely outperforms all the other algorithms with
respect to the computational cost. We believe that time effi-
ciency is crucial in real world multimedia applications where
the construction of a personalized classifier needs to be fast
to attract real users.

In Table 4 (upper part) we report the computational costs
for the different methods during the two phases: (i) source
training, which involves only source data, and (ii) target
training, in which also target data are used. In Table 4
(lower part) we report the computational costs of the main
SVTPT operations (see Algorithm 1). SVTPT is the only
method whose computational cost is split between these two
phases, and the most expensive operations (i.e. computation
of Ks and θi) are executed only once, as they are target in-
dependent. Note that, in a HCI setting, the computational
cost of the second phase is the only one perceived by a new
user. Conversely, other personalization methods, such as
TSVM and STM are based on training a new classifier for
each target user, an operation which is generally more costly
then applying a pre-learned regression function. Moreover,
the STM iterative optimization steps do not scale well with
large datasets. Finally, the generic SVM classifier does not
have any computational cost at target training time, as no
personalization is performed. However, training the generic
SVM is more costly then SVTPT, taking about 25 minutes



versus less than 1 minute. The reason is that the computa-
tional complexity of the SVM solvers varies between O(m2)
and O(m3), with m the number of training data points. In
the case of PAINFUL dataset, training 1 classifier over ∼45k
data samples is more costly than training N source classi-
fiers, with an average of ∼1.9k data samples each.

4.3 Conclusions
In this paper we proposed a novel domain adaptation ap-

proach for facial expression analysis which deals with the
inter-individual variability of expressing emotions by learn-
ing a set of personalized facial expression classifiers. With
our approach a classifier for a new target individual is in-
ferred without the need of acquiring labeled data. The pro-
posed method relies on a regression framework to learn a
mapping between a marginal distribution of the datapoints
associated to a given person and the parameters of her/his
personalized classifier. This distribution is represented by
the set of Support Vectors of the linear classifier in the
source case and by all the unlabeled data points in the tar-
get case. While we tested our method on facial analysis
problems (AU detection and pain recognition), its formu-
lation is completely general and potentially applicable to
many other (visual or non-visual) domain adaptation prob-
lems. We showed that our system achieves state-of-the-art
accuracy on public benchmarks while being different orders
of magnitude faster than other unsupervised domain adap-
tation approaches.
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