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Contributions
• We formalize the task of extracting activity patterns as a

non-negative matrix factorization (NMF) problem, consider-
ing as reconstruction function the robust Earth Mover’s Distance
(EMD) and imposing sparsity constraints.

• We derive an alternating optimization approach to solve the
proposed problem efficiently and we show that it is reduced to a
sequence of linear programs (LP).

• With respect to previous work on EMD clustering [1, 6], our method
is more scalable and produces more interpretable results due
to the sparsity constraints.

Efficient Earth Mover’s Distance (EMD-L1)

The DEMD(h,p) is obtained as the solution of the transportation problem:
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By using EMD with L1 as ground distance [2], this simplifies as:
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N (q) is represented by the adjacent bins.

O(Q2) O(Q)

Complexity reduces from O(Q2) to O(Q).

Our Approach
Unsupervised learning approach for video scene analysis.

Features Extraction

original frame foreground mask trajectons features

EMD NMF with Sparseness Constraints
Given a set of clip histograms H = {h1, h2, . . .hN}, discovering high-
level activities is modeled as finding a set of bases P = {p1, p2, . . .pK},
K << N , and the coefficients W = [w1 w2 . . .wN ], wi ∈ RK , such that:
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Choosing Ω(x) = 1√
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The resulting optimization problem is:
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with cx =
√
Q− ωx(

√
Q− 1), e ∈ RQ is a vector of ones.

Alternating Optimization
The EMD learning problem is solved using alternating optimization:

Input: Original clips histograms H = {h1, h2, . . .hN}.
Initialize W = [w1 w2 . . .wN ] with positive random values.

Normalize the columns of W such that
∑

k w
k
i = 1, ∀i = 1, . . . N .

while not converged

Solve (3) s.t. (4) with respect to pk,f using TPC method.
Solve the LP (3) with respect to W,f .

end
Output: W, P = {p1, p2, . . .pK}.

The Tangent Plane Constraint (TPC) method [3] consists in approxi-
mating the non convex cone constraints by linear constraints.

Results - High Level Activities Extraction
Computed basis matrix at increasing level of sparsity ωm:

ωm = 0.5

ωm = 0.7

ωm = 0.9

Nice grouping effect of combining EMD-L1 with sparsity constraints!

Results - Anomaly detection

(Left)Anomaly score and temporal segmentation bar for a 40 clips video sequence.

(Right) Representative frames are extracted from clips detected as anomalous.

Results - Quantitative Evaluation
Clustering accuracy at varying level of sparsity ωm:
ωm 0 0.1 0.3 0.5 0.7 0.9
Junction2 (48 clips) 89.58% 89.58% 89.58% 89.58% 91.67% 89.58%
Roundabout (60 clips) 88.33% 88.33% 90.00% 90.00% 90.00% 90.00%
Junction (39 clips) 89.74% 89.74% 89.74% 89.74% 89.74% 84.62%

Comparison with previous approaches:
std hrc

DDP-HMM [5] EMP [6]
our approach

pLSA [4] pLSA [4] (ωm = 0.7)
Roundabout (60 clips) 81.67% 75.00% 85.00% 86.67% 90.00%
Junction 89.74% 76.92% 87.18% 92.31% 89.74%
Roundabout (148 clips) 84.46% 72.30% 85.14% 86.40% 85.81 %

Datasets are publicly available1. Code is available at our website2.
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