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CONTRIBUTIONS ALTERNATING OPTIMIZATION

e We formalize the task of extracting activity patterns as a = The EMD learning problem is solved using alternating optimization:
non-negative matrix factorization (NMF) problem, consider-

, , , ) Input: Original clips histograms H = {h1, ho,...hn}.
ing as reconstruction function the robust Earth Mover’s Distance

Initialize W = [w; w2 ... wyn| with positive random values.

(EMD) and imposing sparsity constraints. Normalize the columns of W such that ) _, wf =1 Vi=1,...N.
e We derive an alternating optimization approach to solve the while not converged

proposed problem efficiently and we show that it is reduced to a Solve (3) s.t. (4) with respect to p”, f using TPC method.

sequence of linear programs (LP). Solve the LP (3) with respect to W, f.

end

e With respect to previous work on EMD clustering |1, 6], our method Output: W, P — {p', p2. .. p*1.

is more scalable and produces more interpretable results due

to the sparsity constraints. The Tangent Plane Constraint (TPC) method [3] consists in approxi-
mating the non convex cone constraints by linear constraints.

EFFICIENT EARTH MOVER’S DISTANCE (EMD-L;)
RESuLTS - HiIGH LEVEL ACTIVITIES EXTRACTION

Computed basis matrix at increasing level of sparsity wy,:

The Dgyrp(h,p) is obtained as the solution of the transportation problem:

By using EMD with L, as ground distance [2|, this simplifies as:

minfqt >0 Zq ZtEN(q) fq,t

5.t ZtEN(q) fat — ZtEN(q) ft,q = h? —p? Vq
N (q) is represented by the adjacent bins.

Complexity reduces from O(Q?) to O(Q).

OUR APPROACH

, , , , Nice grouping effect of combining EMD-Lq1 with sparsity constraints!
Unsupervised learning approach for video scene analysis.

2 s RESULTS - ANOMALY DETECTION
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(Right) Representative frames are extracted from clips detected as anomalous.

RESULTS - QUANTITATIVE EVALUATION

L= . Clustering accuracy at varying level of sparsity wy,:
original frame  foreground mask trajectons features oo 0 0.1 0.3 0.5 0.7 0.9

Junction2 (48 clips) 39.58%  89.58%  89.58% 89.58% 91.67% 89.58%

Roundabout (60 clips)  88.33%  88.33% 90.00% 90.00% 90.00% 90.00%
EMD NMFE WITH SPARSENESS (CONSTRAINTS Junction (39 clips) 89.74% 89.74% 89.74% 89.74% 89.74%  84.62%

Given a set of clip histograms H = {hi, ho,...hy}, discovering high-

level activities is modeled as finding a set of bases P = {p!, p?, ...p"}, Comparison with prev1o§(si approimfches. our approach
K << N, and the coefficients W = [w; ws ... wy], w; € RY, such that: pLSA [4] pLSA [4 PPP-HMM 5]  EMP [6] (w, = 0.7)
N Roundabout (60 clips) 81.67%  75.00% 85.00% 86.67% 90.00%
ming, w0 Z Deup(hi, Z wfpk) (1) Junction | 89.74%  76.92% 87.18% 92.31% 89.74%
P . Roundabout (148 clips) | 84.46%  72.30% 85.14% 86.40% 85.81%
s.t. wm < QpP*) <wn, YVhk=1...K (2)

Datasets are publicly available!. Code is available at our website?.

. L 1 N .
Choosing Q(x) = N (v —||x||1/]|x]|2), x € RY, (2) enforces sparsity.
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