

Earth Mover's Prototypes: A Convex Learning Approach for Discovering Activity Patterns in Dynamic Scenes

Gloria Zen¹, Elisa Ricci^{2,3}

¹ DISI, University of Trento, Trento, Italy.
 ² TEV, Fondazione Bruno Kessler (FBK), Trento, Italy.
 ³ DIEI, University of Perugia, Italy.

International Conference Computer Vision and Pattern Recognition (CVPR), 2011

Mining behaviors in complex scenes

Goals:

i) to mine patterns of **recurrent activities** (*e.g.* vertical/horizontal traffic flows)

ii) to detect anomalies

(e.g. jaywalker, accident, unusual patterns)

video: junction.avi

Object-centric methods

- occlusions (broken trajectories)
- several targets (curse of dimensionality)
 Not reliable!

Non-object-centric methods

Non-object centric methods in a nutshell

• Low level cues (optical flow, foreground) are extracted and quantized (position and motion) to generate visual words.

• Short video clips are represented as **visual** documents.

• Salient activities (topics) of the scenes are extracted based on Probabilistic Topic Models (PTMs) [Kuettel10, Varadarajan10, Hospedales11].

Dependencies between atomic activities (words) are not considered!

Our approach

Main contributions

• The task of extracting typical activities is formulated as a **simple linear programming (LP) problem**.

• The **similarity between atomic activities** is considered by adopting a variation of the Earth Mover Distance (EMD) as distance measure between histograms.

• Anomalous patterns are detected by comparing salient activities extracted at **multiple scales**.

1/3: Convex prototype learning

Given a set of histograms:

$$\mathcal{H} \;=\; \{oldsymbol{h}_1,\ldots,oldsymbol{h}_N\}, \:oldsymbol{h}_i \in I\!\!R^D$$

We aim to learn N representative prototypes:

$$\mathcal{P} \,=\, \{oldsymbol{p}_1,\ldots,oldsymbol{p}_N\},\,oldsymbol{p}_i \in I\!\!R^D$$

This task is formalized as a convex optimization problem:

$$\min_{\boldsymbol{p}_i \in \boldsymbol{\Omega}} \underbrace{\sum_{i=1}^{N} \mathcal{L}(\boldsymbol{h}_i, \boldsymbol{p}_i)}_{\text{Loss}} + \lambda \underbrace{\sum_{i \neq j} \eta_{ij} \mathcal{J}(\boldsymbol{p}_i, \boldsymbol{p}_j)}_{\text{Regularization}}$$

Loss: similarity between prototype p_i and associated histogram h_i

Regularization: smoothness among neighboring prototypes (\mathbf{p}_i is fused into \mathbf{p}_j) $\eta_{ii} = \{0, 1\}$ indicates prototype's neighborhood

Temporal segmentation: η_{ij} based on a temporal distance criterion *Clustering:* η_{ij} based on the distance between histograms' values

1/3: Convex prototype learning

Given the objective function:

$$\min_{\boldsymbol{p}_i \in \boldsymbol{\Omega}} \sum_{i=1}^{N} \mathcal{L}(\boldsymbol{h}_i, \boldsymbol{p}_i) + \lambda \sum_{i \neq j} \eta_{ij} \max_{q=1...D} |p_i^q - p_j^q|$$

What happens in practice:

2/3: Multi-scale analysis

• Comparing clustering results at multiple scales we can detect unusual behaviors corresponding to atypical histograms.

• A high **Multiscale Anomaly Score** (**MAS**) is assigned to small clusters which persist (do not fuse) along the multi-scale analysis.

Detection of a jaywalker

3/3: Correlation among activities

Atomic activities

We want to consider **similarity among activities** when comparing clip histograms

A cross-bin (Earth Mover Distance) instead of a simple bin-to-bin distance is adopted:

$$EMD(\boldsymbol{h}, \boldsymbol{k}) = \min_{f_{qt} \ge 0} \sum_{q,t=1}^{D} d_{qt} f_{qt}$$

- f_{qt} : **amount of flow** we want to transfer from bin q to t.
- d_{qt} : **ground distance,** encodes similarity among activities.

s.t.
$$\sum_{q=1}^{D} f_{qt} = h^t$$
, $\sum_{t=1}^{D} f_{qt} = k^q$

3/3: Earth Mover's Prototypes

1) We adopt the *EMD* in the Loss function:

$$\min_{\boldsymbol{p}_i \in \boldsymbol{\Omega}} \sum_{i=1}^{N} EMD(\boldsymbol{h}_i, \boldsymbol{p}_i) + \lambda \sum_{i \neq j} \eta_{ij} \max_{q=1...D} |p_i^q - p_j^q|$$

Complexity: $O(D^2)$. This is computationally expensive...

2) An efficient variation of EMD (*EMD-L*₁) is adopted [Ling06], with L_1 distance over bins as ground distance: $d_{qt} = |q - t|$

Sorting: similar activities must correspond to neighboring bins in the histogram!

3) A bin-to-bin distance (L₁) is also considered for performance evaluation. *Complexity: O(D)*

3/3 Earth Mover's Prototypes

The overall optimization problem is a parametric LP:

$$\begin{split} \min_{p_i, \ f_{qt}^i \ge 0} & \sum_{i=1}^N \sum_{q,t=1}^D d_{qt} f_{qt}^i + \lambda \sum_{i \ne j} \eta_{ij} \max_{q=1...D} |p_i^q - p_j^q| \\ \text{s.t.} & \sum_{q=1}^D f_{qt}^i = h_t^i, \ \sum_{t=1}^D f_{qt}^i = p_q^i \end{split}$$

A variant of the revised simplex method can be used to compute the entire regularization path:

Results: datasets

We tested our method on 4 datasets (3 of them publicly available):

	Traffic		Junctio	on ¹		Roundat	bout ¹	Basket	- APIDIS ²
	public	no	public	yes		public	yes	public	yes
	n°frames	6000	n°frames	90000		n°frames	93500	n°frames	6000
	fps	12	fps	25		fps	25	fps	23
	frame size	276x336	frame siz	e 288x360		frame size	288x360	frame size	320x368

¹ QMUL dataset, available on <u>www.eecs.qmul.ac.uk/~jianli/</u> ² APIDIS dataset, available on <u>www.apidis.org/Dataset/</u>

Results: multiscale analysis

Junction dataset				
120				
375				
16				
30 min				

Vertical

Horizontal \leftarrow

Three main traffic flows

u1: Jaywalker

u2: Fire engine

u3: Heavy traffic

 Unusual events

video: junction.avi

Results: clustering

video:

roundabout.avi

Salient activities discovered

Vertical flow

Horizontal flow

Roundabout	ut dataset	
n°clips	148	
cliplen	300	
n°activities	16	
Tot video duration	30 min	

• Accuracy (ground truth¹)

	EMD-L ₁	L_1	$EMD-L_1$	Standard pLSA	Hierarchical pLSA
			random	[Li08bmvc]	[Li08bmvc]
Junction	92.36	89.74	86.7	89.74	76.92
Roundabout	86.40	86.40	72.3	84.46	72.30

¹ [Li08bmvc] J. Li, S. Gong, and T. Xiang. *Global behaviour inference using probabilistic latent semantic analysis*. BMVC, 2008

Results: basket dataset

• Five salient activities discovered

Blue team on attack

Blue team in a free-throw

Towards blue team's court

Yellow team on attack

Towards yellow team's court

Accuracy

video: <u>basket.avi</u>

Basket datase	et
n°clips	100
cliplen	60
n°activities	16
Tot video duration	5 min

Conclusions

• Our approach has shown to be effective for **multiscale analysis** of complex video scenes. It relies on a **convex optimization problem**.

• Up to our knowledge this is the first work which considers the similarity between the atomic activities.

• A variant of the EMD allows to embed this information at a feasible cost, while the sorting of atomic activities in the histogram becomes crucial for good performance.

• Future work will focus on improving scalability (ad hoc solver needed) and learning of temporal rules.

Data and code will be available on: www.disi.unitn.it/~zen

References

[Hospedales11] T. Hospedales, J. Li, S. Gong, T. Xiang. *Identifying Rare and Subtle Behaviours:* A Weakly Supervised Joint Topic Model. IEEE Trans. on PAMI, 2011

[Kuettel10] D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari. *What's going on? Discovering spatio-temporal dependencies in dynamic scenes*. CVPR, 2010.

[Varad10] J. Varadarajan, R. Emonet, and J.-M. Odobez. *Probabilistic latent sequential motifs: Discovering temporal activity patterns in video scenes.* BMVC, 2010

[Hospedales09] T. Hospedales, S. Gong, and T. Xiang. A markov clustering topic model for mining behaviour in video. ICCV, 2009.

[Yang09] Y. Yang, J. Liu, and M. Shah. *Video scene understanding using multi-scale analysis*. ICCV, 2009.

[Li08] J. Li, S. Gong, and T. Xiang. Scene segmentation for behaviour correlation. ECCV, 2008.

[Li08b] J. Li, S. Gong, and T. Xiang. *Global behaviour inference using probabilistic latent semantic analysis*. BMVC, 2008.

[Ling06] H. Ling and K. Okada. An efficient Earth Mover's Distance algorithm for robust histogram comparison. IEEE Trans. on PAMI, 2006

Results: temporal segmentation

Traffic dataset

Salient activities

68.7

video: traffic.avi

Accuracy

