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Motivations and goals

O

« Human expressions (e.g., pain) are exhibited diversely, depending on the
individual’s appearance or personality. Previous work has proven that
personalized classifiers perform better than generic ones

« Our goal is to obtain a personalized classifier for a new user without acquiring
new labeled data

« Most of related work rely on re-weighting source samples and retraining a
classifier, which is a time consuming process. A faster personalization is needed
In some cases, e.g. where timing can affect user experience quality.

Sample frémes of facial (top) non-pain and (bottom) pain expreAssions.




Intuition behind our approach

O

. Despite the inter-subject variabilityy, knowledge can be transferred among
individuals showing similar behavioral patterns.

« We show how 6, can be accurately and efficiently inferred exploiting the similarity
between the data distribution of the target user and the distributions from other

subjects with known 6.
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(1) Aset of personalized facial expression classifiers is learnt for each source user.
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(2) We learn via a regression framework a mapping between a marginal
distribution of the datapoints associated to a given person and the
parameters of her/his personalized classifier.
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(3) Apersonalized classifier is computed for a new given target by
applying the learnt distribution-to-classifier mapping.
A kernel function measures the users’ similarity based on their data
points distributions.




Learning from Distributions 1/2

O

< Input data PRGN PO R

* N labelled source datasets with distributions D; = {X;, Y;} %@,}qu—- ;&3@62
and learnt personalized classifiers @, ={w; , b; }

<% Learning a distribution-to-classifier mapping f : P — &

P is the space of all the possible distributions on X
© s the classifier parameter space

» Learning a relationship between the "shape” of the underlying
distribution and its corresponding hyperplane.

« Once f(') is estimated, it can be applied on the new target
data distribution for the hyperplane estimation
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O

% We use Multioutput Support Vector Regression (M-SVR)! for the mapping function
estimation. The mapping function f : P — © is defined by a set of parameters:

J?[X) =o(X)B+c" - where | T=(B,c)
®(X') is a non-linear mapping

/7

% Parameters can be found by minimizing:
M+41 N

1 / N
min o Y {18i]* + e ) E(107 — f=(X0)])
i=1 =1

/

s The same problem can be solved by introducing kernel matrix K:
N

FX) =Y Vin(Xi, X)+¢
=1

where K@'j = Iﬁ}(Xi,Xj) = @(X@)’qb(Xj), K & IRNXN.

1 D. Tuia, et al. Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geoscience and
Remote Sensing Letters, 8(4):804-808, July 2011.




Kernel Matrix Estimation

O

< Representing similarity between pairs of datasets K(X; ,X;)

* Fisher Kernel
X . X
ke (X, X;) = (G57)'Gy7
« Earth Mover’s Distance (EMD) based Kernel

—pDEnD (X, X
KJEMD(X%XJ'):G E (X J)

« Density Estimate (DE) based Kernel

kpE(Xi, X;) = L Z Z ko (Xp, Xq)




Application Domains and Datasets

O

« Facial Action Unit Detection
Extended Cohn Kanade (CK+)

- set of spontaneous and posed expressions
593 videos, 123 users
Facial landmark detection + SIFT features

« Pain Facial Expression Recognition

UNBC McMaster Shoulder Pain Expression Archive Database (UNBC-MSPEAD)

spontaneous pain expressions of patients under
shoulder mobility tests

200 videos, 25 users

Local Binary Patterns Histograms features




Results — Action Unit Detection

O

- AU | SVM  KMM TSVM DASVM sTM™ | IPT TPT TPT
F-Score EMD Fisher DE

1 61.1 44.9 56.8 57.7 62.2 72.2 74.0 74.4
2 73.5 50.8 59.8 64.3 76.2 81.8 75.5 84.2
4 62.7 52.3 51.9 57.7 69.1 71.5 71.8 66.3
6 5.7 70.1 47.8 68.2 79.6 75.1 74.9 74.8
12 76.7 74.5 59.6 59.0 7.2 85.5 83.5 85.1
17 76.0 53.2 61.7 81.4 84.3 82.8 83.5 76.1
Avg | 70.9 57.6 56.3 64.7 74.8 @ 77.2 76.8

AUC AU | SVM KMM TSVM DASVM sTM | IP1 - TP1  APT
EMD  Fisher DE

1 79.8 68.9 69.9 72.6 88.9 88.0 89.0 88.2
2 90.8 73.5 69.3 71.0 87.5 93.5 92.9 92.6
4 74.8 62.2 63.4 79.9 81.1 88.1 85.0 84.3
6 89.7 87.7 60.5 94.7 94.0 92.2 91.3 91.1
12 88.1 89.5 76.0 95.5 92.8 97.5 97.2 97.1
17 90.3 66.6 73.1 94.7 96.0 95.9 94.3 94.3
Avg | 85.6 74.7 68.7 83.1 90.1 {(92.5) 91.6 91.3

[KMM] Gretton et al. “Covariate shift by kernel mean matching”. Dataset shift in Machine Learning, 2009

[TSVM] T. Joachim “Transductive inference for text classification using support vector machines”, ICML, 1999

[DASVM] Bruzzone et al. “Domain adaptation problems: A DASVM classification technique and a circular validation strategy”.
TPAMI, 2010.

[STM] W.S. Chu et al. “Selective transfer machine for personalized facial action unit detection”. CVPR, 2013.




Results — Pain Facial Expression Recognition

O
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[TTA] J. Chen et al. “Learning person-specific models for facial expression and action unit recognition”. Pattern
Recognition Letters, 2013

[TSVM] T. Joachim “Transductive inference for text classification using support vector machines”, ICML, 1999

[STM] W.S. Chu et al. “Selective transfer machine for personalized facial action unit detection”. CVPR, 2013.




Results at varying number of source data

O

. Performances at varying number of users N (CK+ dataset)
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Results at varying number of source data
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. Performances at varying number of users N (CK+ dataset)
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. Performances at varying number of training images for a new target user
(UNBC-MSPEAD dataset)
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Performance and Computational Cost

O

. Performances vs computational time. Comparison among related works
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Our method is more efficient because it is not based on
retraining the classifier!

[TSVM] T. Joachim “Transductive inference for text classification using support vector machines”, ICML, 1999
[STM] W.S. Chu et al. “Selective transfer machine for personalized facial action unit detection”. CVPR, 2013.




Conclusions

O

« We proposed a novel domain adaptation approach for facial

expression analysis which deals with the inter-individual
variability

A classifier for a new target individual is inferred without the
need of acquiring labeled data

« OUr system achieves state-of-the-art accuracy on public
benchmarks while being different orders of magnitude faster
than other unsupervised domain adaptation approaches
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