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ABSTRACT

Previous works on facial expression analysis have shown
that person-specific models are advantageous with respect to
generic ones for recognizing facial expressions of new users
added to the gallery set. This finding is not surprising, due
to the often significant inter-individual variability: differ-
ent persons have different morphological aspects and express
their emotions in different ways. However, acquiring person-
specific labeled data for learning models is a very time con-
suming process. In this work we propose a new transfer
learning method to compute personalized models without
labeled target data. Our approach is based on learning mul-
tiple person-specific classifiers for a set of source subjects
and then directly transfer knowledge about the parameters
of these classifiers to the target individual. The transfer
process is obtained by learning a regression function which
maps the data distribution associated to each source sub-
ject to the corresponding classifier’s parameters. We tested
our approach on two different application domains, Action
Units (AUs) detection and spontaneous pain recognition, us-
ing publicly available datasets and showing its advantages
with respect to the state-of-the-art both in term of accuracy
and computational cost.

Categories and Subject Descriptors

I.2.10 [Vision and Scene Understanding]: [Video Anal-
ysis]; H.1.2 [User/Machine Systems]: [Human factors,
Human information processing]

General Terms

Human factors
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1. INTRODUCTION
Social interaction among individuals is regulated by a

complex communication code. Everyday people naturally
sense and convey social signals (e.g. interest, approval, dis-
agreement). Automatic understanding this communication
code is one of the priorities for the interpretation of human
social activities. Aiming to face the challenges of creating
socially aware computers, in the last few years the research
in the area of social signal processing [34] has made consid-
erable progresses. Social signals are conveyed (also) through
a great variety of non-verbal behavioral cues such as facial
expressions, gaze, gestures, body postures and vocal out-
bursts. Automatic detection of non-verbal behavioral cues
and specifically of facial expressions [19, 37] is of crucial im-
portance in many areas, including ambient assisted living,
human-computer interfaces, entertainment, education, and
multimedia content analysis. For instance, in [36] facial ex-
pressions are employed to estimate the level of interest of a
user watching a video, in [15] they are used for group meet-
ing analysis and in [30] for affective labeling of multimedia
contents. However, human beings express their emotions in
different ways. Cultural factors, age, gender and personality
strongly influence the intensity and the way in which emo-
tions are exhibited [37]. Other important variability factors
are the person-specific morphological appearance as well as
the illumination conditions or the camera viewpoint.

State-of-the-art facial expression analysis systems achieve
excellent performance in controlled laboratory conditions,
with limited illumination variations, frontal head pose and
posed expressions. However, the accuracy of these systems
often drastically drops in real world situations with spon-
taneous expressions. This drop is largely due to the fact
that the datasets used for training models do not sufficiently
well represent the variability of real-world scenarios. Tech-
nically, this issue can be seen as a special case of the well
known dataset bias effect [14]: the assumption that training
and test data are drawn from the same distribution often
does not hold in realistic conditions and the performance
of a classifier typically degrades when tested in a different
setting from the training one. On the other hand, learning
person-specific or scenario-specific classifiers is often practi-
cally infeasible, due to the need of collecting large number
of task-specific labeled samples. This problem has recently
motivated a large series of efforts in the computer vision and
multimedia communities in developing transfer learning and
domain adaptation approaches [25, 35]. These methods are
specifically designed to exploit the informations acquired in



different but related source domains/tasks when training a
classifier for a novel target task or domain.
However, few attempts have been done so far for using

these techniques in the context of facial expression analysis
and in particular to learn person-specific models [4, 5]. In [4]
Chen et al. proposed a transfer learning approach for spon-
taneous pain recognition. Their method can be used both
in an inductive and in a transductive setting. In both cases
labeled data are provided for a set of individuals (source).
In the inductive setting, few labeled samples are also avail-
able for the subject of interest, while in the more challenging
transductive scenario no annotated data for the target indi-
vidual are collected. In [5] a transductive transfer learning
approach named Selective Transfer Machine is introduced
for AU detection. These methods provide significant ad-
vantages over generic classifiers in term of recognition ac-
curacy. However, their computational cost is usually not
negligible when large datasets are considered as they rely on
re-weighting all source samples according to their similarity
with target data.
In this paper we present a radically different knowledge

transfer strategy to learn personalized models for facial ex-
pression analysis in a transductive setting (Fig. 1). Transfer
learning is formulated as the problem of learning from a set
of data distributions. Specifically, we assume to have at dis-
posal N source datasets. Every source domain corresponds
to a specific individual. Source data are labeled (e.g. in-
dicating an emotion type or a specific AU). Our goal is to
learn a person-specific classifier for a new subject (target)
improving the accuracy over the generic classifier, i.e. the
classifier trained only on source samples. Data in the target
domain are not annotated. In our approach, first a set of
N classifiers, parameterized by the vectors θ1, ...,θN , is ob-
tained from source data. In a second phase, we propose to
use a vector-valued regression framework to learn a mapping
f(·) between each source data distribution and the param-
eters of the associated classifier θi. Once f(·) is obtained,
it is used to predict the optimal classifier θt for the target
distribution.
Our method has been applied to two different problems,

facial AUs detection and pain expression recognition, and
evaluated using two publicly available datasets: the Ex-
tended Cohn-Kanade dataset [17] and the UNBC-McMaster
Shoulder Pain Expression Archive Database [18]. Our ex-
periments demonstrate the advantages of the proposed ap-
proach over state-of-the-art generic classifiers, confirming
the findings of previous works proposing personalized mod-
els. When comparing with methods based on transfer learn-
ing [4, 5], our approach achieves similar or better recognition
accuracy but radically outperforms them in term of compu-
tational cost.
Contributions. To summarize, the main contributions

of this paper are the following: (i) We propose a novel trans-
fer learning approach to obtain personalized models for facial
expression analysis. To the best of our knowledge, this is the
first approach for Transductive Parameter Transfer (TPT),
where the parameters of the source classifiers are “trans-
ferred” to the target domain using a regression framework
without the need of labeled target data. Previous meth-
ods either rely on instance transfer (source sample selection
or re-weighting) or look for a shared feature space between
sources and target data [21]. (ii) Our approach is computa-
tionally very efficient both at training and at testing time,

a crucial aspect in many applications (e.g. HCI). (iii) In
this work, we assume that the different domains correspond
to different users expressing the same emotions but our ap-
proach can be applied to cope with many other variability
sources such as, for instance, viewpoint changes.

2. RELATED WORK
Facial Expression Analysis. In the last few years re-

search on facial expression analysis have made significant
progresses. Many approaches have proved to be effective
for recognizing the seven basic facial expressions (i.e. hap-
piness, sadness, fear, anger, disgust, and surprise plus the
neutral state) or for detecting AUs on which the facial emo-
tions are based [19, 37]. The common approach adopted in
the state-of-the-art face analysis systems for still images con-
sists of three main steps: face registration, feature extraction
(possibly followed by dimensionality reduction) and classifi-
cation. Face registration is commonly achieved by the local-
ization of anatomically salient facial points [27, 28]. Once
the face has been registered, different features can be ex-
tracted either from the whole face image (e.g. Local Binary
Pattern Histograms [1]) or from patches centered around
(a subset of) the facial landmarks (e.g. SIFT features).
Concerning the classification step, SVM, Boosting, Ran-
dom Forests and many other approaches have been proposed
[19, 37]. However, most state-of-the-art systems have been
trained and tested in laboratory conditions, with datasets
mainly composed of frontal face images and posed emotions
[19, 32, 37]. Much little attention has been payed to person-
alized systems and realistic scenarios. Many authors have
recently focused on recognizing spontaneous facial emotions
[7, 16, 33], while others have focused on the recognition of
non-basic emotions such as pain or frustration [13, 29]. How-
ever, all these works are based on generic detectors, i.e. de-
tectors trained using a dataset as much as possible realistic
and which is supposed to generalize to different individuals
and acquisition conditions. Unfortunately, having at dis-
posal only datasets of few hundreds/thousands of images,
generalization is hard to achieve.

To cope with this issue few recent works have proposed
solutions to integrate weakly labeled or unlabeled data. In
[29] Sikka et al. adopted a Multiple Instance Learning ap-
proach for training a pain expression classifier using video-
level labels assuming that frame-level labels are not avail-
able. Pain/no-pain expression classification in a partially la-
beled and unlabeled setting is also considered in [4] where an
extension of AdaBoost is proposed. However, their method
did not achieve significant improvement in terms of accu-
racy with respect to the generic classifier in the transduc-
tive scenario. In [5] Chu et al. presented Selective Transfer
Machine for person-specific AU detection. Their approach is
based on the Kernel Mean Matching technique [9], which is
modified using an iterative minimization procedure where
labeled source data drive a progressive movement of the
generic SVM hyperplane toward the target space. Even if
effective, this approach is very slow at training time, being
the proposed minimization strategy very time consuming.
On the other hand, user-specific adaptation algorithms are
required to be computationally efficient to be used in real
world applications. Our method is mainly motivated based
on this need and our experiments confirm that it is particu-
larly advantageous with respect to [5].



Transfer learning. Transfer learning approaches have
recently become popular as a means to solve or alleviate
the scarceness of (labeled) training samples [35, 25]. Since
a complete survey of transfer learning techniques is beyond
the scope of this article, we refer the reader to [21] where
a taxonomy of the existing approaches is presented show-
ing how most of them can be classified in instance-transfer,
features-transfer and parameter-transfer approaches.
When the target domain is completely unlabeled, usually

instance-transfer approaches are commonly adopted. For
instance, in covariate shift problems, the basic assumption
is that the source and the target feature spaces are the same
but the marginal probability distributions of the input data
are different [21]. In [9] Gretton et al. compare the centroids
of the source and the target distributions and estimate the
source sample weights which reduce this discrepancy. These
weights are then used to assign importance to the source
samples when training a model on target data.
There are two main drawbacks with instance-transfer ap-

proaches. The first is the computational burden. All the
source samples need to be stored as they will be selected
or re-weighted when training a model on target data. This
is not very efficient both in terms of memory requirements
and computational cost. The second issue is that comput-
ing the distance between the means of the source and the
target data distributions in the Reproducing Kernel Hilbert
Space as in many previous works [5, 9] may poorly approxi-
mate the real difference between distributions. We propose
to solve both problems by learning the relation between the
“shape” of each task-specific data distribution and the cor-
responding classifiers’ parameters. Once this mapping has
been learned using source data, source samples can be com-
pletely discarded. In Sec. 3 we show that we only need to
store a kernel matrix representing the distribution similar-
ity. Moreover, we show that our method is flexible as it
permits to define several measures to compare source and
target data distributions, each corresponding to a specific
kernel function.
Learning from Distributions. There is a long track

of works on learning from data distributions, showing suc-
cessful results in several fields, such as text analysis [11],
bioinformatics [2], and computer vision [8]. The common
approach is to map a distribution into a Reproducing Ker-
nel Hilbert Space, introduce a suitable kernel function, and
then use a traditional kernel machine. In this context, the
large majority of methods [10, 11] operates by fitting a para-
metric density function (e.g. a Gaussian distribution) to the
training data, and using the density parameters to compute
the inner products between distributions. Another class of
methods does not make any assumption on the distribution
form and defines kernels among sets of objects [8]. To our
knowledge, no previous works have considered kernel among
distributions to perform domain adaptation. An interesting
exception is [2], where Blanchard et al. proposed a learning
framework based on kernel machines and the kernel matrix
is the product between two terms: a “standard” kernel de-
fined on feature vectors is multiplied by a kernel defined
on the corresponding pairs of distributions. However in [2]
there is no regression framework or explicit transfer of the
source classifier’s parameters to the target domain. Finally,
the solution proposed by Blanchard and colleagues involves
storing and comparing all the source and target samples

Figure 1: Overview of the proposed Transductive
Parameter Transfer (TPT) learning approach for fa-
cial expression analysis.

which gives no computational advantages with respect to
other techniques like instance-reweighting.

3. A REGRESSION FRAMEWORK FOR

PARAMETER TRANSFER
In this section we present our method for Transductive

Parameter Transfer. Let X ,Y be, respectively, a feature
space and a label space. In this paper we consider Y =
{−1, 1} but generalizing our approach to a multiclass set-
ting is straightforward. We assume that N labeled source

datasets Ds
1, ..., D

s
N , Ds

i = {xs
j , y

s
j}

ns
i

j=1, and an unlabeled tar-

get dataset Xt = {xt
j}nt

j=1, x
s
j ,x

t
j ∈ X , ysj ∈ Y, are available.

Moreover, let denote Xs
i = {xs

j}
ns
i

j=1 the set of points in Ds
i

obtained by discarding the labels. We assume that the el-
ements in Xs

i are generated by a marginal distribution P s
i

defined on X and similarly the vectors Xt are generated
by Pt. We generally assume that Pt 6= P s

i and P s
i 6= P s

j

(1 ≤ i, j ≤ N , i 6= j). Finally, we call P the space of all
the possible distributions on X and we assume that Pt, P

s
i

are drawn from P according to the meta-distribution Π, i.e.
Pt, P

s
i ∼ Π.

Our goal is to learn a classifier on the target data Xt

without acquiring label information. The approach we pro-
pose is based on three main steps (Fig. 1). First, a set of
source-specific classifiers is learned on each training set Ds

i .
In the second step a regression algorithm is adopted in or-
der to learn the relation between the marginal distributions
P s
i and the source classifiers’ parameter vectors θi. Finally,

the desired target classifier is obtained applying the learned
distribution-to-classifier mapping and using as input the dis-
tribution Pt. In the following, the three steps are described
in details.

In the first phase, each source dataset Ds
i is used to train

a classifier solving an optimization problem as:

θi = min
θ∈Θ

R(θ) + λLL(θ, D
s
i ) (1)

where θi is the parameter vector associated to the learned
classifier, Θ is the parameter space, R(·) a regularizer and
L(·) is the empirical risk weighted with λL. Specifically,



in this paper we use a set of linear SVM classifiers, thus
θi = [w′

i, bi], wi ∈ IRM , bi ∈ IR, defines a hyperplane in the
feature space X ≡ IRM (see Fig. 1) and it can be estimated
solving:

min
w,b

1

2
||w||2 + λL

ns
i∑

j=1

l(w′xs
j + b, y

s
j ) (2)

where l(·) is the hinge loss.
In the second phase, we propose to use a regression ap-

proach to learn a mapping f : P → Θ . The intuition here
is that each hyperplane, defined by θi, depends on the dis-
tribution P s

i generating the datapoints Xs
i . Thus, if us-

ing the source data we are able to learn the relationship
between the “shape” of the underlying distribution and its
corresponding hyperplane, then, for computing the optimal
hyperplane on target data, we do not need label information
anymore and we can simply apply the learned mapping f(·),
i.e. f(Pt) = [w′

t, bt].
Of course, we do not know P s

i (1 ≤ i ≤ N) neither Pt,
but we assume they can be approximated with the associated
sample sets Xs

i and Xt, respectively. Thus, given a training
set T = {Xs

i ,θi}Ni=1 we propose to learn a mapping:

f̂ : 2X → Θ (3)

which approximates f(·). The function f̂(·) is a vector-
valued set function, i.e. a function which takes as input
a set of datapoints X and outputs a vector θ = [w′, b]. If

X ≡ IRM , i.e. θ is a M + 1 dimensional vector, f̂(·) can
be learned using M +1 independent scalar regressors. How-
ever, as it is reasonable to assume that the elements in θ

are correlated, we use a vector-valued regression approach
where the output dimensions are jointly estimated. In our
implementation, we adopt the Multioutput Support Vector
Regression (M-SVR) framework proposed in [31]. In pre-
liminary experiments we also tested a k-nearest neighbour
approach, averaging the θ values corresponding to the k-
closest sources, based on the kernels presented in the next
sections, but we obtained much worse results with respect
to the proposed Multioutput SVR. We believe that this is
due to the fact that SVR is a better tool for regression.
The M-SVR is a generalization of the ǫ-insensitive Support

Vector Regression to a multi-dimensional case. In the M-

SVR framework, f̂(·) can be defined by a set of parameters
π = (B, c):

f̂(X) = φ(X)′B+ c′ (4)

where B = [β1, . . . ,βM+1] and c = [c1, . . . , cM+1]
′ are the

weight matrix and the bias vector, respectively, and φ(X)
is a nonlinear mapping of the set of data X to a higher-
dimensional space. In turn π can be found by minimizing:

min
π

1

2

M+1∑

i=1

||βi||2 + λE

N∑

i=1

E(‖θ′
i − f̂π(Xi)‖) (5)

where E(·) is a loss function which extends to the multi-
dimensional case the ǫ-insensitive loss proposed by Vapnik
for scalar-valued Support Vector Regression, i.e.:

E(u) =

{
0 u < ǫ

u2 − 2uǫ+ ǫ2 u ≥ ǫ
(6)

As for scalar-valued SVR, the problem (5) can be solved
in its dual form introducing the kernel matrix K ∈ IRN×N ,

Algorithm 1 Optimization algorithm to solve (5)

Input: The set T = {Xs
i ,θi}Ni=1, the parameters λE , ǫ.

Initialize k = 0, Vk = 0, ck = 0.
Inner Loop:

Compute ai using (9), i = 1, . . . , N .

Compute V̂, ĉ solving (8) ∀ j = 1, . . . ,M + 1.
Compute ηk using a backtracking algorithm.
Compute Vk+1 = Vk + ηk(V̂ −Vk).
Compute ck+1 = ck + ηk(ĉ− ck).
Set k = k + 1.

Until Convergence

Output: V, c

Algorithm 2 The proposed TPT approach

Input: The sets Ds
1, ..., D

s
N , Xt, the regularization pa-

rameters λL, λE , ǫ.

Compute {θi = (wi, bi)}Ni=1 using (2).
Create a training set T = {Xs

i ,θi}Ni=1.
Compute the kernel matrix K, Kij = κ(Xs

i , X
s
j )

using (10), (13) or (14)

Given K, T , compute f̂(·) solving (5).

Compute (wt, bt) = f̂(Xt) using (7).

Output: wt, bt

Kij = κ(Xi, Xj) = φ(Xi)
′φ(Xj) [31] and the decision func-

tion (4) can be rewritten as:

f̂(X) =
N∑

i=1

Vi.κ(Xi, X) + c′ (7)

whereV ∈ IRN×M+1 is the matrix of the optimal parameters
computed solving the dual optimization problem associated
to (5) and Vi. denotes the i-th row. To compute V and c in
this paper we follow [31] and adopt an iterative reweighted
least-squares procedure. This procedure is summarized in
Algorithm 1. We define the matrix Θ ∈ IRN×M+1 Θ =
[θ1, . . . ,θN ]′. At each iteration k, the values of V and c are
updated solving a series ofM+1 independent weighted least-
squares problems, one for each column of V (here denoted
as V.j) and for each cj :

[
K+A 1
a′K 1′a

] [
V.j

cj

]
=

[
Θ.j

aΘ.j

]
(8)

where Θj. is the j-th row of the matrix Θ and 1 is an all-one
column vector. The vector a = [a1, . . . , aN ] and the matrix
A ∈ IRN×N , Aij = aiδ(i − j) are computed at each step
using:

ai =

{
0 uk

i < ǫ
2λE(uk

i −ǫ)

uk
i

uk
i ≥ ǫ

(9)

and uk
i = ‖θ′

i −
∑N

i=1 V
k
i.κ(Xi, X) − (ck)′‖. Due to lack of

space, for more details on the M-SVR framework we refer
the reader to the original paper [31].



Finally, once (5) is solved, in the last phase of our method,
(7) is used to compute the parameter vector of the target

classifier, i.e. θt = f̂(Xt).
From Algorithm 1 and from (7) it is clear that, both

for computing f̂(·) and to apply f̂(·) to Xt, we only need
a kernel κ(Xi, Xj) which represents the similarity between
pairs of datasets Xi, Xj . In Sec. 3.1-3.3 we propose different
choices for such a kernel, but it is worth noting that other
kernels can be used as well.
In Algorithm 2 we summarize the whole training proce-

dure. The test phase is standard as in classification with
SVM. Given a new target feature vector x, the correspond-
ing label y is predicted using: y = sign(w′

tx+ bt).

3.1 Fisher Kernel
Fisher kernels [10], originally proposed in machine learn-

ing and statistics to measure the similarity between distribu-
tions, have recently become common tools in the computer
vision and multimedia fields [20, 22].
Suppose that the set of points X = {xt}nt=1 is gener-

ated by the marginal distributions P on X . Let pγ be a
probability density function which models the generative
process of elements in X where γ is the parameter vector
governing pγ . In statistics, the score function is defined
as Gγ = ∇γ log pγ(X), i.e. it is the gradient of the log-
likelihood of the data with respect to the model param-
eters and describes how the parameters of the generative
model pγ should be modified to better fit the data [10].
Typically pγ is chosen as a Gaussian Mixture Model and
γ = {αh, µh,Σh, h = 1, ..., H}, being H the number of com-
ponents and αh, µh,Σh the component weight, its mean and
its covariance matrix, respectively. In our experiments we
set H = 20. As it is common, we also assume that every
matrix Σh is diagonal, i.e. Σh = diag(σh).
Given two sets of points Xi and Xj generated by the two

distributions Pi and Pj , their similarity can be measured
using the Fisher Kernel [10]:

κFK(Xi, Xj) = (GXi
γ Zγ)

′
ZγG

Xj
γ = (GXi

γ )′GXj
γ (10)

where Fγ = Z′
γZγ is the Cholesky decomposition of the

Fisher Information Matrix [10] and GX
γ is the so called Fisher

vector. The Fisher vector [22] is obtained computing GX
γ =

[GX
α1
, . . . ,GX

αH
,GX

µ1
, . . . ,GX

µH
,GX

σ1
, . . . ,GX

σH
], i.e. calculating

and concatenating the following terms (∀h = 1, . . . , H):

GX
αh

=
1√
ωh

∑

t

(ψt(h)− ωh) (11)

GX
µh

=
1√
ωh

∑

t

ψt(h)
xt − µh

σh

GX
σh

=
1√
2ωh

∑

t

ψt(h)

[
(xt − µh)

2

σ2
h

− 1

]

where ωh = exp(αh)∑
j exp(αj)

and ψt(h) represents the soft assign-

ment of xt to the h-th Gaussian. We refer to [22] for further
details.

3.2 EMD-based kernel
The Earth Mover’s Distance [26, 24] has been widely used

in computer vision as it represents a simple and practical
approach to measure the distance between distributions. To
compute the EMD between Xi and Xj , first a clustering

algorithm is applied separately to the two datasets (we use
a simple k-means algorithm in our experiments). In this
way the signatures of each set I = {(νi

1, w
i
1), . . . (ν

i
Q, w

i
Q)}

and J = {(νj
1, w

j
1), . . . (ν

j
Q, w

j
Q)} are computed, where νi

q,

νj
q are the cluster centroids respectively obtained on the Xi

andXj datasets and w
i
q, w

j
q denote the weights associated to

each cluster. In this paper, for sake of simplicity, we consider
the same number of clusters Q = 20 for both datasets and
the cardinality of each cluster is used as cluster weight.

Given two signatures I and J , the EMD between the
associated datasets Xi and Xj is defined as the solution of
the following transportation problem:

DEMD(Xi, Xj) = min
fpq≥0

Q∑

p,q=1

dpqfpq (12)

s.t.

Q∑

p=1

fpq = w
i
q

Q∑

q=1

fpq = w
j
p

where fpq are flow variables and dpq is the ground distance
defined as dpq = ‖νi

p − νj
q‖. In a nutshell, the EMD repre-

sents the minimum cost needed to transform one distribution
into another. Using EMD we define a kernel:

κEMD(Xi, Xj) = e
−ρDEMD(Xi,Xj) (13)

where ρ is a user defined parameter. Despite this is not
a valid kernel as it is not semi-definite positive we observe
excellent performance in our experimental evaluation. This
is in line with the findings of previous works [6].

3.3 Density Estimate-based Kernel
The last choice for a kernel measuring the similarity of

two distributions we present here is taken from [2]. It is
based on a Density Estimate (DE) kernel and it is defined
as follows:

κDE(Xi, Xj) =
1

nm

n∑

p=1

m∑

q=1

κX (xp,xq), (14)

where n,m are the cardinality of Xi, Xj , respectively, and
κX (·) is a normalized gaussian kernel defined on X .

4. EXPERIMENTS
In this section we present two series of experiments to

demonstrate the effectiveness of the proposed TPT approach
in two different application domains: AU detection (Sec. 4.1)
and pain recognition (Sec. 4.2). We deliberately choose
these in order to compare our approach with the only other
transductive domain adaptation methods for facial expres-
sion analysis we are aware of: the Transductive AdaBoost
(TA) algorithm proposed in [4] and the Selective Transfer
Machine (STM) in [5]. For this reason, we adopt the same
experimental protocols presented in [4, 5], i.e. we use the
same benchmarks, the same image registration and features
extraction pipelines and the same evaluation scheme (on
a frame basis) and metrics (Area Under ROC and/or F1

Score). In the following subsections we present the results
of our experimental evaluation in details. Note that in [5]
the authors also use the RU-FACS dataset which is no more
publicly available. Therefore, we could not test our system
on that benchmark. We conclude this section analyzing the



Table 1: Performance on Cohn-Kanade+ dataset, F1 Score
AU SVM KMM TSVM DASVM STM TPT TPT TPT

[9] [12] [3] [5] EMD Fisher DE
1 61.1 44.9 56.8 57.7 62.2 72.2 74.0 74.4
2 73.5 50.8 59.8 64.3 76.2 81.8 75.5 84.2
4 62.7 52.3 51.9 57.7 69.1 71.5 71.8 66.3
6 75.7 70.1 47.8 68.2 79.6 75.1 74.9 74.8
12 76.7 74.5 59.6 59.0 77.2 85.5 83.5 85.1
17 76.0 53.2 61.7 81.4 84.3 82.8 83.5 76.1
Avg 70.9 57.6 56.3 64.7 74.8 78.2 77.2 76.8

Table 2: Performance on Cohn-Kanade+ dataset, AUC.
AU SVM KMM TSVM DASVM STM TPT TPT TPT

[9] [12] [3] [5] EMD Fisher DE
1 79.8 68.9 69.9 72.6 88.9 88.0 89.0 88.2
2 90.8 73.5 69.3 71.0 87.5 93.5 92.9 92.6
4 74.8 62.2 63.4 79.9 81.1 88.1 85.0 84.3
6 89.7 87.7 60.5 94.7 94.0 92.2 91.3 91.1
12 88.1 89.5 76.0 95.5 92.8 97.5 97.2 97.1
17 90.3 66.6 73.1 94.7 96.0 95.9 94.3 94.3
Avg 85.6 74.7 68.7 83.1 90.1 92.5 91.6 91.3

Figure 2: CK+ dataset: sample frame. The green
rectangle shows the cropped part of the image and
the dots are the detected facial landmarks (the 16
selected landmarks are in green).

influence of the cardinality of the source datasets (N) and
the number of target samples (nt) on the accuracy of the
proposed method (Sec. 4.3).

4.1 Facial Action Unit Detection

4.1.1 Dataset

The Extended Cohn-Kanade1 (CK+) dataset [17] con-
tains a set of spontaneous and posed expressions with only
frontal faces. The dataset includes 593 videos from 123
users. The number of videos per user ranges from 1 to 11.
The video length varies from 4 to 71 frames. A sample frame
extracted from this dataset is shown in Fig. 2.

4.1.2 Feature Extraction

In order to compare our results with [5], we followed the
same experimental protocol and we implemented the same
feature extraction pipeline. First, the subject’s face and fa-
cial landmarks are detected, the face is aligned, cropped and
resized to a 200×200 pixel window. We use the code avail-

1http://www.pitt.edu/∼emotion/ck-spread.htm

Figure 3: UNBC-MSPEAD dataset: sample frames.
Spontaneous facial expressions of patients under
shoulder mobility tests are shown.

able at the author’s website2. Then, as in [5] we select 16
landmarks (Fig. 2) from which we extract SIFT descriptors
using OpenCV from 36 × 36 pixel regions around them. In
[5] the authors do not specify what landmarks to select, so
we chose the external corners of the mouth, of the eyes and
of the eyebrows plus other 10 equally spaced landmarks in
the mouth, the eyes and the eyebrows. Finally, all these
descriptors are concatenated and dimensionality is reduced
using Principal Component Analysis. We retain 90% of the
energy, obtaining a final feature vector of size 51. Similarly
to [5], we select the most frequent AUs in the dataset and
the detection of each AU is considered as an independent
binary classification problem. However, differently from [5],
we could not test our system on AU7 and AU15 because the
number of samples for these two AUs is too small. This fact,
in combination with the low number of persons (N) in the
CK+ dataset, makes it difficult for our system to learn the
relation between the data point distributions and the hy-
perplane parameters. Thus, the average performance values
showed in Tables 1-2 are computed using 6 AUs.

4.1.3 Results

Following [5], our experiments are conducted using a leave-
one-subject-out evaluation scheme. The performance are
computed using the F1 score, defined as F1 = 2·recall·precision

recall+precision
,

and the Area Under ROC (AUC).
We compare our approach with a generic classifier learned

on the entire source data (SVM), a semi-supervised Trans-

2http://humansensing.cs.cmu.edu/intraface/



Figure 4: UNBC-MSPEAD dataset: similarity matrices of the learnt θi for each subtask, obtained with (a)
our method, (b) individual “ideal” classifiers and (c) generic classifiers.

ductive SVM (TSVM) [12] and transfer learning-based meth-
ods: STM [5], Kernel Mean Matching (KMM) [9] and Do-
main Adaptation SVM (DASVM) [3]. The results are shown
in Tables 1 and 2. The values concerning the performance
of STM, SVM, KMM, TSVM and DA-SVM are reported
from [5]. The parameters of our system (λE , ρ and ǫ) are
computed using an inner cross-validation loop on the source
subjects.
Our method outperforms all the other approaches consid-

ering both the AUC and the F1 Score. Specifically, the best
performances are obtained using the EMD kernel, while with
the DE kernel and the Fisher kernel they are slightly inferior.
Among competing methods, TSVM performs poorly. We ar-
gue that this is due to the fact that all the source samples
are retained in the training process. This may bias the clas-
sifier because training samples from irrelevant subjects can
be included. KMM, DASVM and STM, instead, re-weight
and possibly retain only significant samples, according to
different criteria. In particular, only STM outperforms a
generic classifier, underlying the importance of an appropri-
ate re-weighting scheme. However, our approach achieves
even better performance than STM. We believe this is due
to the fact that STM represents the discrepancy between
source and target distributions by the distance of the asso-
ciated centroids. Conversely, the kernel functions of TPT
better capture the similarity between data distributions.

4.2 Pain Expression Recognition

4.2.1 Dataset

The UNBC-McMaster Shoulder Pain Expression
Archive Database3 (UNBC-MSPEAD) [18] is composed
of 200 video sequences of patients with shoulder injuries. It
depicts 25 patients performing a series of active and passive
range-of-motion tests with either their affected limb or the
unaffected one. The dataset is annotated on a frame basis
(48398 frames are labeled by experts using the Prkachin and
Solomon Pain Intensity, PSPI, metric system [23]). Some
frames are shown in Fig. 3.

4.2.2 Feature Extraction

To extract features from video sequences we follow the
approach proposed in [4]. For each frame we use the eye
locations provided in the UNBC-MSPEAD database to crop
and warp the face region into a 128×128 pixel image. Then
the resulting face image is divided into 8 × 8 blocks and
Local Binary Pattern Histograms features [1] are extracted
on each block. Following the pipeline reported in [4] we

3http://www.pitt.edu/∼emotion/um-spread.htm

adopt uniform LBPu2
8,1, where u2 means“uniform”and (8, 1)

represents 8 sampling points on a circle of radius 1. The
resulting 59-dimensional feature vectors for each block are
concatenated resulting into a descriptor of 8 × 8 × 59 =
3776 dimensions. Finally, Principal Component Analysis is
applied to reduce feature dimensions retaining 90% of the
variance. The dimension of the final feature vectors is 334.

4.2.3 Results

Following [4], our experiments are conducted using a leave-
one-subject-out evaluation scheme. However, since there is
no pain exhibited in the videos of one subject (i.e. PSPI
score is equal to 0 for all the frames), we exclude them from
the experiments. Hence, the final number of subjects con-
sidered, both at training and at testing time, is 24. As in [4],
every fame is tested independently of the others (no tempo-
ral information is used) and with a binary output (pain/no
pain).

In order to allow a comparison of our results with [4],
we evaluate the performance using AUC and we compare
against: a generic classifier (SVM) trained using only the
source samples (no domain adaptation), Transductive Trans-
fer Adaboost (TTA) [4], Transductive SVM (TSVM) [12]
and Selective Transfer Machine (STM) [5]. For TTA, we re-
port the performances published by Chen et al. in [4], while
for the last two algorithms, we use the codes publicly avail-
able4,5. The parameters of our system (λE , ρ and ǫ) are
computed using an inner cross-validation loop on the source
subjects. The results are shown in Fig. 5 and Fig. 6. Figure
5 compares different kernel choices in our approach. As in
the case of the CK+ dataset, the best performances are ob-
tained using the EMD kernel. In the rest of the experiments,
we refer as TPT our method with the EMD kernel.

Figure 6 shows the accuracy of our approach with respect
to the baseline methods. TPT outperforms all the other al-
gorithms. However, the improvement is modest with respect
to what observed on the CK+ dataset (see Sec. 4.1.3). In
general, for this dataset, personalization does not provide
much benefits with respect to a generic classifier (SVM).
We attribute this finding to the following two main rea-
sons. Firstly, this dataset is much more difficult than the
CK+: while in the latter all the faces have a frontal pose,
in UNBC-MSPEAD there are large pan and pitch rotations,
expressions are spontaneous and inter-individual differences
are pronounced. Moreover, in the CK+, only the emotion
peaks are annotated (i.e. the last frame of each video), while
in UNBC-MSPEAD all the frames are labeled, and the dif-

4http://svmlight.joachims.org/
5http://humansensing.cs.cmu.edu/software.html



Figure 5: UNBC-MSPEAD dataset. Performances
obtained with our method with different kernels.

Figure 6: UNBC-MSPEAD dataset. Performances
obtained with our method and baselines.

ference between pain and non pain expressions is more sub-
tle. In fact, the pain intensity of positive samples varies
from 1 to 16 and these samples are considered all equally
positive. Sample frames of pain expressions at varying in-
tensity levels are shown in Fig. 8. The second reason may
be found in the fact that in the UNBC-MSPEAD dataset
the number of subjects (and thus the number of individual
classifiers θi) is lower than those in CK+ (24 vs. about
80-90, depending on the AU). In Sec. 4.3 we show how the
accuracy of our approach varies as a function of N . Finally,
comparing TPT with SVM on a subject basis (i.e., counting
the number of persons for which there is an improvement
of TPT over SVM), we observe that TPT achieves a higher
AUC than SVM on 18 out of 24 subjects.
In order to further validate our approach, in Fig. 4 we

show the similarity matrix S of the classifiers computed for
each of the 24 subjects of the UNBC-MSPEAD dataset, de-
fined as: Sij = e−||θi−θj ||2 , with i, j = 1, ..., N . In the left-
most matrix, each θi is the classifier vector obtained with
our method. In the center matrix, θi is the “ideal” classifier
for the i-th subject, i.e., an SVM classifier computed using
only the samples of the i-th individual, in the “ideal” hy-
pothesis of having labeled samples for this target user. For
sake of comparison, we also report the classifiers computed
with a generic SVM using a leave-one-user-out protocol, in
other words, using all the training samples excluding the
ones of the i-th subject. The similarity matrix of the θi

learned with generic SVM are shown in the rightmost ma-
trix. It is interesting to notice that the structure of the
similarity matrix obtained with our method is very similar
to the structure of the ideal classifier matrix, which visu-
ally confirms that our regression framework is effective in
building personalized models.
Figure 8 shows the results obtained with our method on a

sample video sequence. In details, it compares the values of
the decision function obtained with TPT (i.e. z = w′

tx+bt)
and the original PSPI values (GT). GT and z have been
normalized between 0 and 1 for ease of visual comparison.
It is interesting to notice that the values of z are significantly
aligned with the pain intensity values.

Figure 7: UNBC-MSPEAD dataset: (left) AUC
and (right) average time for training a target classi-
fier with different transfer learning methods: (top)
TSVM [12], (center) STM [5] and (bottom) TPT.
Results for [5, 12] are reported considering different
percentage of source data samples.

The last part of this section is dedicated to compare TPT
and state-of-the-art approaches with respect to the compu-
tational times. In Fig. 7 we report the performance and the
training time of the methods for which code is available on-
line, i.e. TSVM and STM. In [4] Chen et al. report the
training time for TTA on UNBC-MSPEAD (17.6 minutes)
but they do not mention the workstation they used, thus the
results are not directly comparable. Our experiments were
run on a 4 Cores 2.40GHz CPU machine.

The training times reported in Fig. 7 indicate the average
times for training a single target classifier. All the methods
but ours use all the source samples (suitably re-weighted) for
training a target classifier, thus they require a much higher
computational load. Conversely, in TPT training is split in
three phases (Sec. 3), whose average time are the follow-
ing: (i) computing domain-specific classifiers, ∼40 seconds,
(ii) computing the kernel matrix, ∼4 seconds, (iii) comput-
ing the target-specific classifier using a pre-calculated kernel
matrices, 0.4 seconds. It is worth noting that steps (i) and
(ii) involve only source samples and are executed a single
time. Only step (iii) is target-specific and it is the phase
that realizes adaptation on a new subject. Thus in Fig. 7 we
only report the computational times of step (iii). It is clear
from these plots that both TSVM and STM do not scale well
as the number of training samples increases. For instance,
using only 10% of the source samples, TSVM needs 17 min-
utes on average for training an individual classifier, STM 18
hours and TPT only 0.4 seconds. Even if the accuracy of all
the methods are comparable in this difficult dataset, our pro-



Figure 8: UNBC-MSPEAD dataset: ground truth
labels (GT) compared to the value z = w′

tx+bt of the
decision function obtained with TPT for one sample
video sequence.

Figure 9: CK+ dataset. Performance of TPT at
varying number of source users.

Figure 10: UNBC-MSPEAD dataset. Performance
of TPT at varying number of target samples nt.

posed approach largely outperforms all the other algorithms
with respect to the computational cost. Moreover, indepen-
dently from the kernel choice, we do not need to store the
source samples. Indeed, the regression function value for a
new target task is computed considering only on the ker-
nel matrix. We believe that both memory storage and time
efficiency are crucial in real world multimedia applications,
where the construction of a personalized classifier needs to
be fast and memory resources are usually limited (e.g., with
personal devices).

4.3 Relation between performance and num-
ber of source users and samples

In this section we analyse how the performance of our
method depends on the number of source datasets N and
target samples nt. These experiments have been conducted
respectively on the CK+, which contains the highest number
of subjects - up to ∼90 (depending on the specific AU),
while UNBC-MSPEAD dataset has only 25 subjects - and
on the UNBC-MSPEAD, which contains a higher number of

samples per subjects - around 1900 samples per user, while
for CK+ it is around 150.

In the CK+ experiments, we randomly select a subset
of N + 1 users over all the subjects, varying N from 5 to
∼90. Then we test our method using a leave-one-user-out
approach, in which in turn one user is chosen as the target
subject and the remainingN are used as sources. For a given
value of N , we repeat the experiments 100 times and the
average values are reported in Fig. 9. The performances are
measured computing the AUC. Error bars show the standard
deviation from the mean. As expected, with a low number of
source datasets the performance of TPT are rather modest,
expecially for the AU which are more difficult to detect (e.g.

AU4). In fact, the regression function f̂(·) (Sec. 3) is learned
using N training samples (i.e. data distributions) and, if N
is too small, it generalizes poorly.

We also analyse the impact of the number of target data
points nt on the recognition accuracy for the UNBC-MSPEAD
dataset. Fig. 10 reports the average AUC obtained on 100
runs. On each run, a random subset of nt points is selected
for each target user. A leave-one-user-out protocol is used.
When nt increases the performance improves, as data dis-
tributions are better approximated when a large number of
data points is employed.

5. CONCLUSIONS
In this paper we proposed a method for building person-

specific facial expression classifiers as a way to deal with
the inter-individual variability of the emotions. A person-
alized classifier for a new target subject is inferred without
the need of acquiring labeled data. The proposed method is
based on a regression framework which directly maps the un-
labeled data distribution of a given person to the parameters
of her/his personalized classifier. As far as we know, this is
the first transductive parameter transfer approach in liter-
ature. Oppositely to previous transfer learning approaches
operating in a transductive setting and based on instance
reweighting the main advantage of our method is that we
do not need to store and compare all the source and tar-
get samples. This leads to a significantly reduced computa-
tional cost. We empirically showed that our system achieves
state-of-the-art accuracy on public benchmarks while being
different orders of magnitude faster.
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