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Abstract—Facial expression and gesture recognition algo-
rithms are key enabling technologies for Human-Computer
Interaction (HCI) systems. State of the art approaches for
automatic detection of body movements and for analyzing
emotions from facial features heavily rely on advanced ma-
chine learning algorithms. Most of these methods are designed
for the average user, but the assumption “one-size-fits-all”
ignores diversity in cultural background, gender, ethnicity
and personal behaviour and limits their applicability in real
world scenarios. A possible solution is to build personalized
interfaces, which practically implies learning person-specific
classifiers and usually collecting a significant amount of
labeled samples for each novel user. As data annotation is
a tedious and time consuming process, in this paper we
present a framework for personalizing classification models
which does not require labeled target data. Personalization
is achieved by devising a novel transfer learning approach.
Specifically, we propose a regression framework which exploits
auxiliary (source) annotated data to learn the relation between
person-specific sample distributions and the parameters of
the corresponding classifiers. Then, when considering a new
target user, the classification model is computed by simply
feeding the associated (unlabeled) sample distribution into
the learned regression function. We evaluate the proposed
approach in different applications: pain recognition and action
unit detection using visual data and gestures classification
using inertial measurements, demonstrating the generality of
our method with respect to different input data types and basic
classifiers. We also show the advantages of our approach in
terms of accuracy and computational time both with respect to
user-independent approaches and to previous personalization
techniques.

Index Terms—Facial Expression Analysis, Transfer Learn-
ing, Gesture Recognition, Personalization, Transductive Pa-
rameter Transfer.

I. INTRODUCTION

Nowadays, the importance of adaptive and personalized
human-computer interfaces, as opposite to systems de-
signed for an “average” user, is widely recognized in a large
variety of applications. Machine learning algorithms for au-
tomatic analysis of facial expressions and body movements
are currently employed in many HCI systems. However,
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Fig. 1. Human expressions like pain can be exhibited in many different
ways. Our goal is to obtain a personalized classifier θt for a new user
without acquiring labeled data. We show how θt can be accurately and
efficiently inferred exploiting the similarity between the data distribution
of the target user and the distributions of other subjects with known θi.
The intuition is that, despite the inter-subject variability, knowledge can be
transferred among individuals by learning a mapping between the marginal
data distributions and the corresponding classifiers’ decision boundaries.

surprisingly, few of these systems adapt the learned models
to specific users. The issue with personalization is that
typically a significant amount of labeled data is required to
train user-specific classifiers. This is practically infeasible
in many real world applications as collecting a large number
of annotated samples is very time consuming.

In this paper we propose a novel transfer learning frame-
work to build personalized models without resorting to
user-specific labeled data (Fig. 1). Our approach relies on
learning a regression function which captures the relation
between a data distribution and the classifier’s parameters
learned using the samples generated from that distribution.
Specifically, our method is based on three phases (Fig. 2).
In the first phase, given N auxiliary source users and the
associated labeled training samples, we learn a set of N
classifiers, parametrized by the vectors θ1, . . . ,θN . In the
second phase a regression function f(·), which relates the
unlabeled data distribution of the i-th source user with
the associated classifier θi, is learned. Importantly, once
f(·) is obtained, labeled data are not required anymore.
Finally, given a novel target user, it suffices to apply f(·)
to the associated data distribution to obtain the personalized
classifier θt.

The proposed transfer learning approach is a general
framework that can be applied to different types of data,
e.g. images, audio, text, physiological signals, inertial
measurements, etc., and different domains. In order to
show the generality of the proposal, we chose different
personalization domains as applications of our method.
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We first consider facial expression analysis from visual
data and specifically we address the tasks of automatic
pain recognition and action unit detection. Moreover, we
use accelerometer measurements for gesture recognition,
whose practical importance is quickly growing due to
the widespread diffusion of mobile devices and consumer
products which integrate inertial sensors (e.g. the Nin-
tendo Wii). More in detail, our experimental evaluation
is conducted on three different datasets. In a first series
of experiments we use accelerometer data recorded from
a wrist-worn smartwatch to learn personalized gesture
recognition classifiers. As discussed in previous works [1],
[2], personalization is crucial in this scenario since there
is a large inter-subject variability in the way gestures are
executed. In a second series of experiments we consider two
publicly available datasets for facial expression recognition.
Specifically we use the recent PAINFUL dataset [3], which
collects videos of patients with shoulder injuries, and we
devise a patch-based facial expression recognition approach
based on Local Binary Pattern Histograms (LBPH) [4].
Again, user-specific models are of utmost importance in
this context as the way in which the patients spontaneously
show pain varies considerably between different people (see
Fig. 1). Finally, we consider the popular extended Cohn
Kanade (CK+) dataset [5] and we learn a set of Action
Unit detectors using facial landmarks and SIFT descriptors.
In Sec. IV we show that our approach outperforms user-
independent classifiers and state of the art personalization
methods in all the three scenarios, even if the tasks and the
adopted features are very different. Moreover, at training
time, our algorithm is significantly faster than other domain
adaptation techniques, most of which are based on time
consuming instance re-weighting strategies. We believe that
the computational cost is a critical factor for personalization
in HCI systems, as user adaptation typically needs to be
accomplished in a limited time frame.

As far as we know, this is the first transfer learning
approach which proposes to learn a mapping between a
data distribution and the corresponding classifier’s decision
boundary. According to [6], current unsupervised domain
adaptation works can be differentiated into instance transfer
and feature transfer methods. Conversely, the proposed
method aims to directly transfer the parameters of the
classifiers from the source to the target domain.

This paper significantly extends and develops the results
of our previous works [7], [8]. Specifically, the main con-
tributions of this paper are: (i) We present a unified frame-
work for transductive parameter transfer, which permits to
learn personalized models by exploiting the relationship
between data distributions and their associated classifiers.
Differently from [7], [8] where SVMs are considered as
individual source classifiers, in this paper we show that
our framework also applies to other classification models,
e.g. metric learning algorithms [9]. The source code of our
algorithm is available online1. (ii) We provide an extensive
experimental analysis of the main features of our method,

1http://disi.unitn.it/∼zen/code/TPT.zip

i.e. we investigate the role of learning a set of independent
regression models as opposite to adopting a multi-output
regression framework, we evaluate different kernels for
measuring the similarity among data distributions and, in
the case of SVMs, we study the effect of approximating
the source data distributions by using support vectors
rather than all the samples; (iii) To demonstrate the broad
applicability of the proposed personalization strategy, we
introduce a novel application scenario not considered in
[7], [8], i.e. accelerometer-based gesture recognition.

The paper is organized as follows. Section II reviews
related work. Section III introduces our approach, together
with the considered application scenarios. The results of
our experimental evaluation are presented in Sec. IV, and
conclusions are drawn in Sec. V.

II. RELATED WORK

In this section we review the literature related to transfer
learning and personalization approaches for facial expres-
sion analysis and accelerometer-based gesture recognition.

A. Transfer learning

In the last few years several transfer learning methods
have recently become popular in the multimedia and the
computer vision fields [10], [11], [12] to solve or alleviate
the so-called dataset bias problem. Transfer learning aims to
improve the learning performance in a target domain using
knowledge extracted from related source domains. In [6]
a survey on different approaches is presented. According
to the type of information transferred from source to
target domains, the methods are categorized into parameter
transfer, feature transfer and instance transfer approaches.

Parameter transfer methods aim to find a set of param-
eters or priors shared between the source and the target
models. In [13] Yang et al. extended standard Support
Vector Machines (SVMs) and proposed Adaptive-SVMs.
Adaptive-SVMs employ a regularization term to impose the
target classifier to be similar to the source one. However,
these methods usually require annotated target data, which
are typically not easily obtained in HCI scenarios.

Feature transfer methods operate by looking for a shared
feature representation for source and target data. For in-
stance, in [14] the input feature vector is augmented by
obtaining a novel descriptor composed of a shared, a
source-specific and a target-specific part. The Heteroge-
neous Feature Augmentation method is presented in [15]
to tackle the problem of knowledge transfer when the data
from the source and the target domain are represented by
heterogeneous features with different dimensions. In [16] a
shared representation for source and target data in terms of
visual attributes is proposed. In [17] both source and target
data are projected to a common subspace where each target
sample can be represented by some combination of source
samples. In [18] deep structures are exploited for learning a
discriminative feature representation to alleviate the cross-
domain discrepancy problem.
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Instance transfer approaches [19], [20] are commonly
adopted when the target data are unlabeled. For instance,
in [19] Gretton et al. proposed to compute the centroids of
the source and the target distributions and to estimate those
source sample weights which reduce the inter-centroid
distance in a Reproducing Kernel Hilbert Space. These
weights are then used to assign importance to the source
samples when training a model for classification on target
data. The drawback with most instance transfer approaches
[19], [20] is that computing the distance between centroids
may poorly approximate the real discrepancy between
distributions. We overcome this issue by adopting more
accurate approaches to quantify the difference between
source and target distributions which are based on specific
kernels for distributions. Moreover, most instance transfer
methods rely on a computationally intense training phase,
while our method is very efficient.

B. Learning Personalized Models for Human Behaviour
Analysis

Automatic analysis of facial expressions and body move-
ments based on user personalization methods and different
sensing modalities (e.g. cameras, depth or inertial sensors)
have recently shown significant advantages over traditional
user-independent approaches [20], [21], [22], [1]. In the
following we briefly review recent works on learning user-
specific models for facial expression analysis from visual
data and accelerometer-based gesture recognition.

1) Visual-based Facial Expression Analysis: In the last
few years, research on facial expression analysis from
visual data has made significant progress. Many approaches
have proved to be effective for recognizing simple facial
expressions (e.g. happiness, sadness, anger, etc.) or alterna-
tively for detecting Action Units (AUs) [23], [24]. However,
most state of the art methods are trained and tested in
laboratory conditions, with datasets mainly consisting of
frontal face images and posed emotions [23], [24], [25].
Very little attention has been paid to realistic scenarios
and personalized systems. Notable exceptions are the works
in [26], [27], [28] which focused on recognizing sponta-
neous facial expressions and non-basic emotions, e.g. pain.
However, they are based on user-independent models, i.e.
on detectors trained on a generic dataset, which aim to
be sufficiently representative of many possible sources of
variability (e.g. illumination conditions, target appearance,
etc.). Unfortunately, having at disposal only datasets with
few hundreds or thousands of images, generalization to
arbitrary conditions is hard to achieve.

To cope with this issue, few works have proposed so-
lutions to integrate weakly labeled or unlabeled data. In
[29] Sikka et al. adopted a Multiple Instance Learning
approach for training a pain expression classifier using
video-level labels where frame-level labels are not avail-
able. The problem of pain detection is also addressed in [21]
where an extension of AdaBoost for user-personalization
is proposed both in a supervised and in an unsupervised
setting. However, in the unsupervised case, the proposed

method did not achieve a significant improvement in terms
of accuracy with respect to the user independent classifier.
In [20] Selective Transfer Machine (STM) is proposed for
person-specific AU detection. STM is based on the Kernel
Mean Matching algorithm [19], which is modified using
an iterative minimization procedure where labeled source
data drive a progressive movement of the generic SVM
hyperplane toward the target space. Even if effective, this
approach is very slow at training time, as the underlying
optimization strategy is very time consuming. On the other
hand, user-specific adaptation algorithms are required to be
computationally efficient to be used in HCI applications.
Our method is mainly motivated by this need and our
experiments confirm that it is much faster than [20], being
its accuracy comparable and even better (see Sec. IV).

2) Accelerometer-based Gesture Recognition: For many
years research on automatic gesture recognition focused
on vision-based approaches. More recently the advent of
low cost depth sensors and the great diffusion of mobile
devices with built-in inertial sensors (e.g. smartphones,
smartwatches, videogame controllers) has lead to new op-
portunities. In particular accelerometer-based gesture recog-
nition approaches have proved to be advantageous over
traditional visual-based methods, being robust to environ-
mental disturbances and to user movements.

Since mobile devices with built-in accelerometers are a
relatively new technology, only few previous works exist
on the topic. Of particular relevance is the work in [30],
which specifically addresses the use of smartwatches as
gesture-based input devices, underlining the fundamental
distinction between the two tasks of gesture recognition and
activity recognition. Accelerometer-based gesture recog-
nition is generally modeled as a classification problem,
with different works proposing different machine learning
algorithms. In particular, SVMs [31], [32], Hidden Markov
Models (HMMs) [33], [22] and Bayesian Networks [34]
have proved to be effective for this task. Recently, some
works highlighted the importance of devising user-specific
classification models. Liu et al. [2] proposed an approach
based on Dynamic Time Warping, one-shot learning and
continuous update though template adaptation. Similarly,
Mantyjarvi et al. [22] presented a system which can be
trained with a single gesture and employs noise-distorted
copies of that gesture to learn a HMM. Costante et al. [1]
proposed a metric learning algorithm for building person-
alized classifiers. However, all these approaches rely on
labelled user-specific data.

III. A REGRESSION FRAMEWORK FOR TRANSDUCTIVE
PARAMETER TRANSFER

In this section we present our Transductive Parameter
Transfer (TPT) method. To point out the generality of the
proposed framework, we first introduce the TPT algorithm
while the application scenarios chosen for evaluation are
described in Sec. IV. TPT is a transfer learning technique
for parametric classifiers. However, in Sec. III-D we show
that TPT can be extended to a semi-parametric framework
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Fig. 2. Overview of the proposed Transductive Parameter Transfer (TPT) approach. Box 1: Learning user-specific source classifiers. Box 2: Learning
a distribution-to-classifier regression function. Box 3: Computing the target classifier.

and in Sec. IV we provide results for both the full-
parametric and the semi-parametric versions.

A. Notation and Definitions

Let X and Y denote the feature and the label spaces,
respectively. For classification, Y = {−1, 1} in the binary
setting, while Y = {1, . . . , C} in case of multiple classes.

Given an unlabeled target dataset Xt = {xtj}n
t

j=1 and N
labeled source datasets Ds

1, ..., D
s
N , Ds

i = {xsij , ysij}
ns
i
j=1,

xsij ,x
t
j ∈ X , ysij ∈ Y , we want to learn a classifier on the

target data Xt without acquiring labeled information. In the
context of user personalization Ds

i contains all the training
samples corresponding to the i-th source person, while
Xt is the set of (unlabeled) data of the target individual
for whom we aim to construct the personalized classifier.
Moreover, Xs

i = {xsij}
ns
i
j=1 denotes the set of points in Ds

i

obtained by discarding the label information.
We assume that the vectors in Xs

i are generated by a
marginal distribution Πs

i defined on X and similarly the
vectors Xt are generated by Πt. We generally assume that
Πt 6= Πs

i and Πs
i 6= Πs

j (1 ≤ i, j ≤ N, i 6= j). Finally, we
call P the space of all possible distributions on X and we
assume that Πt,Πs

i are i.i.d. sampled on P . In the following
(·)′ denotes the transpose operator.

B. Transductive Parameter Transfer

1) Overview: The proposed TPT approach is based on
three main phases (Fig. 2). In the first phase, N user-
specific classifiers are learned, one for each source training
set Ds

i . Each classifier is defined by a parameter vector
θi. Then a regression algorithm is proposed in order to
learn the relation between the marginal distributions Πs

i

and θi. Finally, the desired target classifier θt is obtained
by applying the learned distribution-to-classifier mapping
and using as input the distribution Πt. In the following, the
three phases are further detailed.

2) Phase 1: Learning User-specific Source Classifiers:
In TPT the source datasets Ds

i are used to learn N
independent classifiers θi by solving N different problems:

min
θ∈Θ

Ω(θ) + λLΛ(Ds
i ;θ) (1)

where Θ is the parameter space, Ω(·) is a regularizer and
Λ(·) is the empirical risk. The parameter λL regulates
the trade-off between the empirical risk and regularization.
Each weight vector θi represents a personalized classifier
since it is learned using user-specific samples Ds

i . While
our framework is general and different choices can be
made for the regularization and the loss terms in (1), here
we consider a set of linear SVMs. Therefore, defining
X ≡ IRM , the optimal decision hyperplane θi = [w′i, bi]

′,
wi ∈ IRM , bi ∈ IR, for each source dataset Ds

i can be
computed by solving:

min
wi,bi

1

2
||wi||2 + λL

ns
i∑

j=1

`(w′ix
s
ij + bi, y

s
ij) (2)

where `(y, ŷ) = max(0, 1− yŷ) is the hinge loss.
3) Phase 2: Learning a Distribution-to-Classifier Map-

ping: In the second phase of TPT, we propose a regression
framework in order to learn a mapping f : P → Θ
between a sample distribution and its associated classifier.
The intuition is straightforward: if we are able to learn the
relationship between the underlying distribution Πs

i and the
corresponding hyperplane θi, then, when computing the op-
timal hyperplane on the target data we do not need labeled
samples since we can simply apply the learned mapping
f(·), i.e. θt = f(Πt). However, since Πs

i (1 ≤ i ≤ N ) and
Πt are unknown, we need to approximate these distributions
using the empirical data at disposal. In particular in this
paper we use all the samples in Xt to approximate Πt while
for Πs

i we evaluate two possibilities: (i) all the data in Xs
i

are considered and (ii) only the Support Vectors obtained
by solving (2) for each of the i-th source tasks are used as
a proxy for Πs

i .
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Let X̂s
i = {x̂sij}

ms
i

j=1 be the set of Support Vectors
associated with θi (X̂s

i ⊆ Xs
i ). The distribution generating

X̂s
i is generally different from the distribution generating

Xs
i . In fact X̂s

i does not include those points which are far
from the decision hyperplane. Thus approximating Πs

i using
X̂s
i introduces an error. Anyway, using X̂s

i instead of Xs
i is

justified by the fact that there is a well-known relation be-
tween the Support Vectors X̂s

i and the decision hyperplane
θi, defined through Lagrange multipliers. In other words,
the classifier can be computed using wi =

∑ns
i
j=1 α

s
ijy

s
ijx

s
ij ,

where αsij denote the Lagrange multipliers obtained solving
(2). However, αsij = 0 if a datapoint xsij is not a support
vector, so only the set X̂s

i is required to compute wi.
There is also an advantage in using X̂s

i in place of Xs
i

in term of computational cost and memory requirements,
since typically ms

i < nsi . In the following, to simplify the
notation, we assume that Zi is the set of points chosen to
approximate Πs

i , either Zi = X̂s
i or Zi = Xs

i .
Given a training set T = {(Zi,θi)}Ni=1 we propose to

learn a mapping f̂ : 2X → Θ which approximates f(·).
The function f̂(·) is a vector-valued set function, i.e. a
function which takes as input a set X and outputs a vector
θ ∈ IRM+1. In this paper we investigate two possible
approaches to compute f̂(·), i.e. learning M+1 independent
scalar regressors f̂k(X):

f̂(X) = (f̂1(X), ..., f̂M+1(X)) (3)

and using the multi-output regression framework in [35].
Learning Independent Regression Models. In the case

of independent regression models, we compute each f̂k(·)
using the ε-insensitive Support Vector Regression (SVR)
framework [36] which, in our setting, can be formulated as
follows. Each f̂k(·) (1 ≤ k ≤ M + 1) is defined by a set
of parameters (vk, uk):

f̂k(X) = v′kφ(X) + uk, (4)

where vk and uk are the weight vector and the bias,
respectively and φ(X) is a nonlinear mapping of X to a
higher-dimensional space. In turn (vk, uk) can be found
by:

min
vk,uk

1

2
||vk||2 + λE

N∑
i=1

|θik − f̂k(Zi)|ε (5)

where θik denotes the k-th dimension of θi, |e|ε =
max(0, |e| − ε) is the ε-insensitive loss function, λE and ε
are user-defined parameters.

The problem (5) can be solved in its dual form [36]
introducing the set of Lagrange multipliers δki :

maxδki
−1

2

N∑
i,l=1

δki δ
k
l κ(Zi, Zl) +

N∑
i=1

θikδ
k
i − ε

N∑
i=1

|δki | (6)

s.t.
N∑
i=1

δki = 0, |δki | ≤ λE (k = 1, ...,M + 1)

where κ(Zi, Zl) = φ(Zi)
′φ(Zl) is the kernel function.

Note that the same kernel can be used for all k = 1, ...,M+
1, since κ(Zi, Zl) estimates the similarity between the

Algorithm 1 The proposed TPT approach.
Input: Ds

1, ..., D
s
N , Xt, the parameters λL, λE , ε.

Phase 1. Learning User-specific Source Classifiers
Compute θi, ∀i = 1, . . . , N using (2).

Phase 2. Learning a Distribution-to-Classifier Mapping
Create the training set T = {Zi,θi}Ni=1,

where Zi = X̂s
i or Zi = Xs

i .
Compute the source kernel matrix K, Kil = κ(Zi, Zl)

using one among (15), (16), (17) or (19).
Given K, T , compute f̂(·) solving:
{M-SVR} (9) or {SVR} (6) ∀ k = 1, ...,M + 1

Phase 3. Computing the Target Classifier
Compute the target kernel vector Kt, Kt

i = κ(Zi, X
t)

using (15), (16), (17) or (19).
Given Kt, compute θt = f̂(Xt)

using {M-SVR} (11) or {SVR} (7),(3).

Output: θt

sets Zi and Zl and is independent from the value of k.
In Sec. III-C we specifically discuss the adopted kernel
representations. In the dual form, (4) becomes:

f̂k(X) =

N∑
i=1

δki κ(Zi, X) + uk. (7)

Multi-output Regression. In alternative to learning in-
dependent regressors, we also consider the Multioutput
Support Vector Regression (M-SVR) framework proposed
in [35]. The M-SVR is a generalization of the ε-insensitive
SVR to a multi-dimensional case. In the M-SVR frame-
work, f̂(·) can be defined by the parameters (V,u):

f̂(X) = φ(X)V + u (8)

where V = [v1, . . . ,vM+1] and u = [u1, . . . , uM+1]
are the weight matrix and the bias vector, respectively.
Similarly to scalar-valued regression, (V,u) can be found
by solving:

min
V,u

1

2

M+1∑
i=1

||vi||2 + λE

N∑
i=1

E(‖θ′i − f̂(Zi)‖) (9)

where E(·) is a loss function which extends to the multi-
dimensional case the ε-insensitive loss proposed by Vapnik
for scalar-valued Support Vector Regression [36], i.e.:

E(x) =

{
0 x < ε
x2 − 2xε+ ε2 x ≥ ε (10)

As for scalar-valued SVR, the problem (9) can be
solved in its dual form by introducing the kernel matrix
K ∈ IRN×N , Kij = κ(Zi, Zj) [35]. Hence, the decision
function (8) can be rewritten as:

f̂(X) =

N∑
i=1

∆i.κ(Zi, X) + u (11)

where ∆ ∈ IRN×M+1 is the matrix of the optimal pa-
rameters computed solving the dual optimization problem
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Algorithm 2 Optimization algorithm to solve (9)
Input: The set T = {Zi,θi}Ni=1, the parameters λE , ε.

Initialize k = 0, ∆k = 0, uk = 0.
Inner Loop:

Compute ai using (13), i = 1, . . . , N .
Compute ∆̂, û solving (12) ∀ j = 1, . . . ,M + 1.
Compute ηk using a backtracking algorithm.
Compute ∆k+1 = ∆k + ηk(∆̂−∆k).
Compute uk+1 = uk + ηk(û− uk).
Set k = k + 1.

Until Convergence

Output: ∆,u

associated to (9) and ∆i. denotes the i-th row. To compute
∆ and u in this paper we follow [35] and adopt an
iterative re-weighted least-squares procedure. This proce-
dure is summarized in Algorithm 2. We define the matrix
Θ ∈ IRN×M+1, Θ = [θ1, . . . ,θN ]′. At each iteration k,
the values of ∆ and u are updated solving a series of M+1
independent weighted least-squares problems, one for each
column of ∆ (here denoted as ∆.j) and for each uj :[

K + A 1
a′K 1′a

] [
∆.j

uj

]
=

[
Θ.j

aΘ.j

]
(12)

where Θj. is the j-th row of the matrix Θ and 1 is an
all-one column vector. The vector a = [a1, . . . , aN ] and
the matrix A ∈ IRN×N , Aij = aiI(i − j), where I(·) is
an indicator function, are computed at each step k using:

ai =

{
0 zki < ε
2λE(zki −ε)

zki
zki ≥ ε

(13)

and zki = ‖θ′i−
∑N
j=1 ∆k

j.κ(Zj , X)−uk)‖. Due to lack of
space, for more details on the M-SVR framework we refer
the reader to the original paper [35].

4) Phase 3: Learning the Target Classifier: In the last
phase of TPT the optimal target classifier θt is computed
considering the unlabeled target samples Xt and using
θt = f̂(Xt). For M-SVR we use (11), while (7) and
(3) are used in the case of independent regression models.
Note that the computations which involve the source data
(Phase 1-2) are performed only once. Then, for every
new user, only Phase 3 needs to be repeated. This is
very advantageous in real world applications, where it is
desirable to accomplish personalization in a limited time
frame. Algorithm 1 summarizes the main phases of TPT.

5) Test Phase: Once θt = [(wt)′, bt]′ has been com-
puted, the test phase is a standard classification with linear
SVMs. Given a new target feature vector x, the correspond-
ing label y is predicted as y = sign(x′wt + bt). It is worth
noting that our TPT framework can be trivially extended to
a multi-class setting adopting a one-versus-all scheme.

C. Kernels for Distributions

From Algorithm 1 it is clear that both in the case of inde-
pendent regression models and for multi-output regression,

the dual optimization problems and the decision functions
only depend on the kernel matrix. It is worth noting that
κ(·) is defined on sets of points and not on feature vectors
(i.e. single data points) as it is more common. The role
of the kernel here is to estimate the similarity between
distributions, empirically represented by sets of data points.
In the following we propose different (non-exhaustive)
choices for the kernel function.

1) EMD-based kernel: The Earth Mover’s Distance
(EMD) [37], [38] represents a simple and practical ap-
proach to measure the distance between distributions. To
compute the EMD between Zi and Zj , first a clustering
algorithm is applied separately to the two datasets (we use
a simple k-means algorithm in our experiments). In this way
the signatures of each set I = {(ci1, wi1), . . . (ciQ, w

i
Q)} and

J = {(cj1, w
j
1), . . . (cjQ, w

j
Q)} are computed, where ciq , c

j
q

are the cluster centroids respectively obtained on Zi and Zj
and wiq , w

j
q denote the weights associated to each cluster.

In this paper we set Q = 20 and we use the cardinality of
each cluster as the cluster weight.

Given two signatures I and J , the EMD between the
associated datasets Zi and Zj is defined as the solution of
the following transportation problem:

DEMD(Zi, Zj) = min
fpq≥0

Q∑
p,q=1

dE(c
i
p, c

j
q)fpq (14)

s.t.
Q∑
p=1

fpq = wiq

Q∑
q=1

fpq = wjp

where fpq are flow variables and dE(cip, c
j
q) is the ground

distance defined as the Euclidean distance dE(cip, c
j
q) =

‖cip−cjq‖. In a nutshell, the EMD represents the minimum
cost needed to transform one distribution into another.
Using EMD we define a kernel:

κEMD(Zi, Zj) = e−ρDEMD(Zi,Zj) (15)

where ρ is a user defined parameter. Despite this is not a
valid kernel as it is not semi-definite positive we observe
excellent performance in our experimental evaluation. This
is in line with the findings of previous works [39].

2) Fisher Kernel: Fisher kernels [40], originally pro-
posed in statistics and machine learning to measure the sim-
ilarity between distributions, have recently become com-
mon tools in computer vision and multimedia [41].

Given two sets of points Zi and Zj generated by the
marginal distributions Πi and Πj , the Fisher Kernel [40]
measuring their similarity is defined as:

κFK(Zi, Zj) = g′Zi
gZj

(16)

where gZ is the so called Fisher vector associated to the
set Z = {zp}np=1 [41]. The Fisher vector is obtained
by considering a Gaussian Mixture Model, modeling the
generative process of the elements in Z, with parameters
{γh,µh,Σh}Hh=1. Here, H denotes the number of mixture
components and γh,µh,Σh are the component weight,
its mean and its covariance matrix, respectively. In our
experiments we set H = 20 and we assume that every
Σh is diagonal, i.e. Σh = diag(σh). The Fisher vector gZ
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is obtained by computing and concatenating the following
terms (∀h = 1, . . . ,H):

gγh =
1
√
ωh

∑
p

(ψh(zp)− ωh)

gµh
=

1
√
ωh

∑
p

ψh(zp)
zp − µh
σh

gσh
=

1√
2ωh

∑
p

ψh(zp)

[
(zp − µh)2

σ2
h

− 1

]
where ωh = exp(γh)∑H

j=1 exp(γj)
and ψh(zp) represents the soft

assignment of zp to the h-th Gaussian [41].
3) Principal Components Kernel: Assuming that the

probability distribution associated to each sample set Zi
is a multivariate Gaussian distribution, we define:

κPCA(Zi, Zj) = e−ρDPCA(Zi,Zj), (17)

The distance among sets DPCA(Zi, Zj) is computed as
follows:

DPCA(Zi, Zj) = dE(ni,nj) + λP
∑
k

dC(Uik,Ujk) (18)

where ni, nj represent the empirical means of the samples
in Zi and Zj , while Ui, Uj are the matrices containing
the principal eigenvectors associated to the samples in Zi
and Zj , respectively. The function dC(Uik,Ujk) is the
cosine distance between Uik and Ujk, i.e. the k-th columns
of Ui and Uj , corresponding to the k-th eigenvectors. In
constructing Ui and Uj in our experiments we select the
eigenvectors corresponding to the 80% of the total energy.
The parameter λP is a user defined parameter assessing the
relative importance of the two terms, respectively modeling
the distance between the centroids of the distributions and
the cumulative difference of the eigenvector directions.

Intuitively, (18) computes the “alignment” mismatch
between Zi and Zj when represented as Gaussian clouds
of points. It is worth noting that the assumptions of the
PCA-based kernel are much stronger than those of other
kernels (e.g. the Fisher Kernel, in which each probability
distribution is modeled with a Mixture of Gaussians). Nev-
ertheless, our experimental results in Sec. IV demonstrate
that this kernel also provides good recognition accuracy,
despite its simplicity.

4) Density Estimate-based Kernel: The last choice for a
kernel measuring the similarity of two distributions is taken
from [42]. It is based on a Density Estimate (DE) kernel
and it is defined as follows:

κDE(Zi, Zj) =
1

nm

n∑
p=1

m∑
q=1

κX (zip, z
j
q), (19)

where Zi = {zip}np=1 and Zj = {zjq}nq=1, zip, z
j
q ∈ X ,

and κX (·) is a normalized Gaussian kernel defined on the
feature space X .

D. Extension to Distance Learning

The TPT method so far presented is based on parametric,
linear classifiers whose parameter vectors θ1, ...,θN are

used to train a regression function. In this section we
show how the proposed approach can be extended to deal
with semi-parametric, non-linear classifiers. Specifically we
consider a Distance Learning (DL) algorithm [9] and we
call this extension TPTDL.

In distance learning, k-nearest neighbour is typically used
for classification. However, the Euclidean distance between
sample points is replaced by a metric, usually parametrized
by a vector m̂ learned with a discriminative criterion [43].
In a multi-class scenario m̂ can be further split in class-
specific parameter vectors, each vector defining a class-
specific distance function [44].

We show below how TPTDL can be obtained by partially
changing the three phases of TPT as previously defined.
First, in Phase 1 of Algorithm 1 the source-specific clas-
sifiers (linear SVMs) are replaced by a set of user-and-
class-specific distance functions parametrized by θi = m̂i,
where m̂i = [(mi

1)′, . . . , (mi
C)′]′ is a vector in which every

mi
c defines the metric associated to the i-th source user

and the c-th class (recall that we assume C classes in a
multi-class scenario). Every mi

c is learned using a set of
triplets (xsij ,x

s
ip,x

s
iq) of samples extracted from Xs

i (i.e.
xsij ,x

s
ip,x

s
iq ∈ Xs

i such that ysij = ysip, ysij 6= ysiq), and
imposing a set of constraints of the type:

dc(xsij ,x
s
ip) < dc(xsij ,x

s
iq), (20)

where c = ysij and dc(·) is a distance function between two
vectors ri, rj defined as dc(ri, rj) =

∑
k(mi

c)
k|rki − rkj |.

The constraint (20) states that the vector mi
c should be

learned such that xsij is closer to xsip than to xsiq . In a multi-
class scenario we use class-specific distance functions (i.e.,
depending on c) because they have been proven to be more
effective than a single metric [44]. We refer to [44] for the
details concerning how each vector mi

c can be learned.
Once we obtain a set of user-and-class-specific distance

functions, parametrized by θi, ...,θN (Phase 1 of Algo-
rithm 1), we use Phase 2 of Algorithm 1 to compute
the source and target kernel matrices (K and Kt) and
the regression function f̂(·). Then, for every new target
user, we use her/his unlabeled sample points Xt and
Phase 3 of Algorithm 1 to compute the target metric vector
m̂t = [(mt

1)′, . . . , (mt
C)′]′ = θt = f̂(Xt). We now have a

set of class-specific metrics for the target user defined by
the corresponding column vectors in m̂t.

At test time we use the learned m̂t with a k-nearest
neighbour classifier. However, since labels from Xt are not
available, we use the labeled samples of the most similar
source user, who is selected using the target kernel vector
Kt. In other words, we select the source set Ds

p, where
p = arg mini∈[1,...,N ] κ(Xs

i , X
t). Hence, in the test phase,

given a new target feature vector x, we compute its label
applying a k-nearest neighbour scheme on the set Ds

p and
the learned metric parametrized by m̂t.

IV. EXPERIMENTAL EVALUATION

In this Section we evaluate the proposed TPT approach
considering three different applications where learning user-
specific models is shown to be more effective than adopting
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Fig. 3. The set of gestures in the SWGR dataset.

TABLE I
OVERALL ACCURACY ON THE SWGR DATASET

SVM DL TPT TPTDL
Gesture classes SVR M-SVR SVR M-SVR

1, 6 88.3 84.3 90.7 90.3 86.7 87.0
2, 7 83.0 84.0 88.0 89.3 86.9 87.0
3, 4 93.7 96.7 95.2 96.7 96.9 97.3

1, 2, 7 88.2 89.6 90.1 90.2 90.2 90.2
1, 2, 3, 6, 7 86.3 84.9 86.5 86.5 86.4 86.9

1-8 87.0 88.5 87.2 87.3 89.9 90.0

generic classifiers. Specifically, we consider the problems
of gesture recognition from smartwatch data, action unit
detection and pain recognition from facial expressions. The
three scenarios have been chosen in order to demonstrate
the generality of the proposed method and its effective-
ness in different contexts. In particular, the first scenario
considers a multiclass classification problem, while the
other two tasks imply learning a binary classification model
in two different conditions: when the number of source
users is small but each source set contains several samples
(pain recognition) and, oppositely, when there are numerous
source users but the size of each source set is small (action
unit detection).

In the experiments we evaluate different aspects of our
transfer learning framework and compare it with several
baseline methods. For instance, in Subsection IV-A we
compare the proposed method when linear SVMs are used
as base-classifiers (TPT) with the case in which k-nearest
neighbour and distance learning are used (TPTDL), It
is worth noting that while TPT with linear SVMs was
originally presented in [7], TPTDL is introduced in this
paper (Sec. III-D). In our experiments (Subsection IV-B
and IV-C) we also analyse the performance of the proposed
approach when different kernel functions are used to mea-
sure the discrepancy among data distributions. Specifically,
we compare the EMD, Fisher and Density Estimate kernel
originally proposed in [7] with the Density Estimate kernel
using support vectors presented in [8] and the Principal
Component kernel introduced in this work.

A. Smartwatch-based Gesture Recognition

Dataset. As a first application scenario, we consider
the problem of recognizing arm gestures performed by a
user wearing an accelerometer-equipped smartwatch. We
evaluate the performance of TPT on the SmartWatch-based
Gesture Recognition (SWGR) dataset presented in [32].
This dataset comprises the 8 gestures shown in Fig. 3,
each repeated 10 times by 15 different users. For each
gesture repetition a manually segmented recording of the
smartwatch’s 3-axis accelerometer’s measurements is given.
Features. We consider each of the accelerometer’s axes as
producing an independent signal, which we process with the
Haar Wavelet Transform, as described in [31]. We retain
the first 8 coarsest-scale coefficients, and we concatenate

Fig. 4. SWGR dataset. Confusion matrices obtained with (left) a generic
classifier and (right) the proposed approach. Top row: SVM and TPT,
bottom row: DL and TPTDL.

them to form a 24-element feature vector which is used to
represent data samples.

Results. The results obtained on this dataset are shown
in Table I, where the overall accuracy (sum of the diagonal
elements of the confusion matrix) achieved at increasing
number of classes (i.e. C = 2, 3, 5, 8) is reported. In the
binary classification case (C = 2) we chose both pairs
of categories which are difficult to discriminate (e.g. 2
versus 7 and 1 versus 6) as well as easier classification
tasks. In both cases the advantages of our method over
user-independent classifiers (either “SVM”: linear SVM
or “DL”: Distance Learning with k-nearest neighbour) are
evident. In Table I and in the following we denote with
“TPT” the proposed method when linear SVMs are used
as base-classifiers, while “TPTDL” indicates the distance
learning-based extension presented in Sec. III-D. Moreover,
columns denoted with “SVR” indicate the use of indepen-
dent regression models while “M-SVR” refers to the multi-
output regression framework (see Sec. III-B3). Similarly
to [32], we note that some classes are more critical to
discriminate among each other, such as 2 and 7, or 1 and 6.
Note also that, generally speaking, the 2-class task {2, 7}
is harder than the 3-class task {1, 2, 7}. This is probably
due to the fact that gesture 1 is easier to discriminate with
respect to both 2 and 7, which leads to a lower overall error
when gesture 1 data points are used for testing together
with gestures 2 and 7. A similar phenomenon is observed
comparing the all-class task (1−8) with {1, 2, 3, 6, 7}. With
C > 2, TPT performs slightly worse than TPTDL, probably
because the latter is based on non-linear classifiers which
can better model complex data distributions. With C > 2,
TPTDL also outperforms both SVM and DL. The confusion
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Fig. 5. SWGR dataset. Results for the two-classes case: 2 vs 7. Hyperplanes obtained with (green) ideal, (blue) generic and (red) TPT classifiers.

Fig. 6. SWGR dataset. Results for the three-classes case: 1,2 and 7. Hyperplanes obtained with (green) ideal, (blue) generic and (red) TPT classifiers.

a) b)
Fig. 7. SWGR dataset. Results for (a) binary (gestures 2 vs 7) and (b) a multiclass classification problems (gestures 1,2,7). (left) Kernel matrix
showing the similarity among the users’ data distributions and (right) overall accuracy obtained with a generic SVM classifier (blue) and TPT (red).

matrices for the all-class task are shown in Fig. 4.

In all the experiments in Table I, TPT is based on the
Density Estimate-based Kernel (Sec. III-C) because we ob-
served it guarantees the highest accuracy when the number
of data points for each task is limited (see Sec. IV-B). In
Table I we also compare the M +1 independent regression
models with the M-SVR approach. The advantages of the
latter are evident.

Visual Analysis of a Two Dimensional Projection. To
gain a deeper insight of the properties of the proposed
personalization method we also analyse in detail one of the
binary classification problems: class 2 versus class 7. We
apply Principal Component Analysis (PCA) to the feature
vectors, retaining only the first two principal components
(which correspond to about 50% of the total energy). The
analysis with two dimensional data permits to visually
inspect the effects of the distribution mismatch among
different individuals. Figure 5 shows the projected data
points corresponding to gesture types 2 and 7, plotted

separately for each of the 15 users. The hyperplanes ob-
tained with a generic classifier (linear SVM trained using
the samples of all the source users) and with TPT are
plotted respectively in blue and red. The hyperplanes in
green are the ideal classifiers, i.e. those trained using only
the target user’s labeled data (here we adopted the same
terminology used in [20]). Note that the hyperplanes of the
generic classifiers are slightly different among each other
since they are trained with a leave-one-user-out protocol,
i.e. with slightly different source user sets. Figure 5 shows
some interesting properties of the classifiers. Firstly, the
data points of the two different gesture types performed by
the same user are usually quite well separated. However,
using a generic classifier for all the users does not seem to
be the optimal solution. Indeed, the ideal hyperplanes tend
to be very different from each other. In most of the cases,
the TPT hyperplane separates the two classes better than
the generic one, and in same cases (e.g., users 8 and 14)
the difference is very pronounced. It is also worth noting
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Fig. 8. SWGR dataset (gestures 2,7). Accuracy of TPT at varying number
of source users compared with a generic SVM.

Fig. 9. SWGR dataset (gestures 2,7). Accuracy of TPT at varying number
of target data points nt.

that these experiments are based on very few samples
per user, which means that the user-specific distributions
have been estimated with scarcity of data. In Fig. 7(a) the
corresponding source kernel matrix (K) and the accuracy
obtained with the generic SVM (in blue) and with TPT
(in red) are shown for each user. Among all 15 users, the
highest improvement is obtained for user 14, followed by
user 8, which corresponds to the intuition we get from the
visualization of the first 2 components in Fig. 5.

Figures 6 and 7(b) show the results on a three-classes sce-
nario (gestures 1, 2, 7). As the multi-class personalization
is performed with a one-vs-all scheme, in Fig. 6 we show
the classifier learned for one of the three classes, plotted
with the symbol ”*” and highlighted in pink, while the data
points of the other two classes are drawn in black, using
two different symbols. The advantage of personalization
can still be observed, but compared to the two-classes case
it is less evident. In fact in the three-classes case, the
data distributions become more complex. As we observed
above, in multiclass problems a non-linear classifier such
as TPTDL performs better (Table I).

Performance at Varying Source and Target Data Size.
Fig. 8 shows the performance of our TPT method and a
generic SVM classifier (gestures 2-7) at varying number of
source users. The x-axis indicates the number N of source
users, which have been randomly selected among the 15
users in the SWGR dataset, repeating the experiment up to
100 runs and finally reporting the average values and the
standard deviations (error bars). As expected, the higher N
is, the more advantageous TPT is with respect to the generic
classifier. In fact, the regression function f̂(·) (Sec. III-B3)
is learned using N training samples (i.e. data distributions)

Fig. 10. Sample frame of the CK+ dataset. The green rectangle shows the
cropped part of the image and the dots are the detected facial landmarks.
The 16 selected landmarks are highlighted in green (better seen at a high
magnification).

and, if N is too small, it generalizes poorly.
We also analyse the impact of the number of target data

points nt on the accuracy. For every nt ∈ [2, n] (for every
user i, n = |Xi| = 20 in the 2 classes scenario), we
randomly select a target user i and a subset of nt samples
from Xi and we apply TPT to such under-sampled target,
obtaining a given accuracy, which is computed using all the
n samples of the target user. The experiment is repeated
up to 100 runs for every value of nt and the average results
are reported in Fig. 9. Quite surprisingly, only 2 data points
are already enough to obtain a high accuracy with the
proposed method. Similar trends of improving performance
at increasing the number of source users N and the number
of target data points nt are shown in our previous work [7]
on the other two datasets, respectively the CK+ and the
PAINFUL dataset.

B. Action Unit Detection

Dataset. The proposed personalization method has been
also applied to the problem of automatic facial Action
Unit detection. We use the Extended Cohn Kanade (CK+)
dataset [5]. This dataset includes 593 videos from 123 users
and contains a set of spontaneous and posed expressions
with only frontal faces. The number of videos per user
ranges from 1 to 11. The video length varies from 4 to 71
frames. A sample frame from the CK+ dataset is shown in
Fig. 10.

Features. We follow the pipeline proposed in [20] for
feature extraction/representation: first the face and the facial
landmarks are detected. The face is then aligned, cropped
and resized to 200×200 pixels. Then, 16 landmarks (see
Fig. 10) are selected and SIFT descriptors are extracted
from 36 × 36 pixels regions around them. Finally, SIFT
descriptors are concatenated and dimensionality is reduced
using PCA. We retain 90% of the energy, obtaining a final
feature vector of size 51. Similarly to [20], we select the
most frequent AUs in the dataset and the detection of each
AU is considered as an independent binary classification
problem. We use the code from [20] available online2 for
face and facial landmarks detection, and OpenCV for SIFT
descriptor extraction. The performance is evaluated in terms
of F1 score, defined as F1 = 2·Recall·Precision

Recall+Precision , and the
Area Under ROC (AUC). All the algorithm’s parameters
(λL, λE , ε) have been set with an inner-loop of cross-
validation over the N source users.

2http://humansensing.cs.cmu.edu/intraface/
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TABLE II
OUR METHOD, COMPARISON AMONG DIFFERENT KERNELS.

PERFORMANCE ON CK+ DATASET, F1 SCORE.

AU EMD Fisher PCA DE DE-SVs DE-SVs-Oracle
1 72.2 74.0 69.5 74.4 74.9 74.8
2 81.8 75.5 77.3 84.2 82.4 82.5
4 71.5 71.8 71.3 66.3 74.2 72.8
6 75.1 74.9 76.7 74.8 74.3 78.3

12 85.5 83.5 84.4 85.1 84.6 85.3
17 82.8 83.5 77.7 76.1 84.3 84.2

Avg 78.2 77.2 76.2 76.8 79.1 79.7

TABLE III
OUR METHOD, COMPARISON AMONG DIFFERENT KERNELS.

PERFORMANCE ON CK+ DATASET, AUC.

AU EMD Fisher PCA DE DE-SVs DE-SVs-Oracle
1 88.0 89.0 86.8 88.2 89.6 90.5
2 93.5 92.9 92.4 92.6 93.9 95.2
4 88.1 85.0 85.9 84.3 88.6 89.4
6 92.2 91.3 91.5 91.1 91.5 92.7
12 97.5 97.2 97.4 97.1 97.5 98.3
17 95.9 94.3 92.7 94.3 94.1 94.0

Avg 92.5 91.6 91.1 91.3 92.7 93.4

TABLE IV
COMPARISON AMONG RELATED WORKS. PERFORMANCE ON CK+

DATASET. F1 SCORE.

AU SVM TSVM KMM DASVM STM TPT
[19] [45] [46] [20] DE-SVs

1 61.1 56.8 44.9 57.7 74.0 74.9
2 73.5 59.8 50.8 64.3 76.2 82.4
4 62.7 51.9 52.3 57.7 69.1 74.2
6 75.7 47.8 70.1 68.2 79.6 74.3
12 76.7 59.6 74.5 59.0 77.2 84.6
17 76.0 61.7 53.2 81.4 84.3 84.3

Avg 70.9 56.3 57.6 64.7 74.8 79.1

TABLE V
COMPARISON AMONG RELATED WORKS. PERFORMANCE ON CK+

DATASET. AUC.

AU SVM TSVM KMM DASVM STM TPT
[19] [45] [46] [20] DE-SVs

1 79.8 69.9 68.9 72.6 88.9 89.6
2 90.8 69.3 73.5 71.0 87.5 93.9
4 74.8 63.4 62.2 79.9 81.1 88.6
6 89.7 60.5 87.7 94.7 94.0 91.5
12 88.1 76.0 89.5 95.5 92.8 97.5
17 90.3 73.1 66.6 94.7 96.0 94.1

Avg 85.6 68.7 74.7 83.1 90.1 92.7

Results. The results are shown in Tables II-V. We report
the performances obtained with our method (TPT) when
M-SVR is used and with different kernel choices. We also
consider previous methods as baselines: a generic classifier
learned on all the source samples (SVM), a semi-supervised
Transductive SVM (TSVM) [45] and three transfer learn-
ing methods, namely STM [20], Kernel Mean Matching
(KMM) [19] and Domain Adaptation SVM (DASVM) [46].
Tables IV-V show that those approaches based on person-
alization achieve higher performance with respect to user-
independent ones and that TPT is the most accurate. Finally,
comparing different kernels (Tables II-III), we observe that
the Density Estimate kernel provides the best performance
when Support Vectors are used (DE-SVs) to approximate
the source data distributions, followed by the EMD kernel
computed on all the source samples. We did not report
results of experiments using Support Vectors and Fisher
and EMD kernels as the performance degrades significantly
with respect to DE kernel. We ascribe this behavior to the
fact that in the CK+ dataset the number of Support Vectors
(SVs) for each source set is quite small.

Discussion on SVs Approximation. Tables II-III show
that, when using the Density Estimate kernel, representing
the source data distributions by means of the only SVs
(DE-SVs) outperforms a representation based on the whole
data set (DE), despite the fact that the target user in both
cases is represented by the whole data set. As mentioned
in Sec. III-B3, we believe that this is due to the fact that
SVs have a stronger geometrical relation with the separating
hyperplanes θi and this compensates the error introduced in
using all the target data (Xt) instead of only the SVs (X̂t)
in representing the target distribution. Of course, SVs for
the target user are unknown, thus they cannot be directly
used. However, we performed an “Oracle” experiment to
estimate what is the accuracy margin which is lost in
this approximation. In this experiment we compute the
performance of TPT with DE-SVs Kernel also in the “ideal”
case in which the SVs for the target user are known.

Quite surprisingly, the accuracy margin gained in the ideal
case is relatively small, as can be observed comparing the
columns (DE-SVs) with the columns (DE-SVs-Oracle) in
Tables II-III. Similar results have been obtained in the pain
recognition scenario (see Table VI).

C. Pain Detection

Dataset. As a third application scenario, we tested TPT
in the context of pain detection from facial expressions.
Automatic pain recognition is of utmost importance for
developing HCI solutions for elderly persons. In fact,
elderly patients who are cognitively impaired tend to have
a decreased ability to communicate and report pain. This
often results in the under-detection and under-treatment
of pain. We consider the PAINFUL dataset [3], which is
composed of 200 video sequences of patients with shoulder
injuries. It depicts 25 patients performing a series of active
and passive range-of-motion tests with either their affected
limb or the unaffected one. The dataset is annotated on a
frame basis (48398 frames are labeled by experts using the
Prkachin and Solomon Pain Intensity, PSPI, metric system
[47]). Example of pain/non pain spontaneous expression,
extracted from the dataset, are shown in Fig. 1.

Features. We follow the pipeline proposed in [21] for
feature extraction/representation. For each frame we use
the eye locations provided in the PAINFUL database to
crop and warp the face region into a 128 × 128 pixel
image. Then, the resulting face image is divided into 8× 8
blocks and Local Binary Pattern Histograms features [4] are
extracted on each block. Following the pipeline reported
in [21] we adopt LBPu28,1, where u2 means “uniform”
and (8, 1) represents 8 sampling points on a circle of
radius 1. The resulting 59-dimensional feature vectors for
each block are concatenated resulting into a descriptor of
8× 8× 59 = 3776 dimensions. Finally, PCA is applied to
reduce feature dimensions retaining 90% of the variance.
The dimension of the final feature vectors is 334. Following
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[21], our experiments are conducted using a leave-one-
subject-out evaluation scheme. However, since for one of
the subjects there are no videos with exhibited pain, we
had to exclude this subject from the training set. Hence,
the final number of subjects considered, at training and at
testing time, is respectively 24 and 25.

Results. We compare the proposed TPT with M-SVR
against a generic classifier (SVM) trained using only
the source samples (no domain adaptation), Transductive
Transfer Adaboost (TTA) [21], Transductive SVM (TSVM)
[45] and Selective Transfer Machine (STM) [20]. For TTA,
we report the performance published by Chen et al. in [21],
while for the last two algorithms, we use the codes publicly
available3,4. The performance is evaluated in terms of AUC.
All the algorithm’s parameters (λL, λE , ε) have been set
with an inner-loop of cross-validation over the N source
users. The results are shown in Table VI. 5 Note that TSVM
and STM suffer from the fact that the PAINFUL dataset is
strongly unbalanced toward negative samples (i.e. no pain
frames). For this reason we trained the TSVM and the STM
classifiers using different percentages of training data (see
Fig. 11), obtained equally sampling the data points from
the negative and the positive samples sets and we report
in Table VI their best results which correspond to 30% of
the whole source data points. Note also that, in the case
of STM, the training time for only one target was over
24 hours (see below), which makes infeasible training with
more than 50% of the source data points for a large dataset
as PAINFUL.

Similarly to what observed for the CK+ dataset, the best
performance is obtained using the DE kernel combined
with SVs. However, comparing personalized classifiers with
user-independent ones (i.e. SVM), we observe that trans-
ferring knowledge provides less benefits. We ascribe this
fact to the following reasons. First, the PAINFUL dataset
is much more difficult than CK+. While in the CK+ all
the faces have a frontal pose, in PAINFUL there are large
pan and pitch rotations, expressions are spontaneous and
inter-individual differences are pronounced. Moreover, in
the CK+, only the emotion peaks are annotated (i.e. the
last frame of each video), while in PAINFUL all the frames
are labeled, and the difference between pain and non pain
expressions is more subtle. In fact, the pain intensity of
positive samples varies from 1 to 16 and these samples are
considered all equally positive. Finally, in the PAINFUL
dataset the number of individuals is much lower than in
CK+ (24 vs. about 80-90, depending on the specific AU).
As shown in Sec. IV-A (see Fig. 8), N is a crucial factor
for personalization with TPT, being the accuracy of the
regression function dependent on the number of source
distributions used for training. Similar findings have been
shown in our previous work [7] analysing the role of N for
the CK+ dataset.

3http://svmlight.joachims.org/
4http://humansensing.cs.cmu.edu/software.html
5Note that the results reported here are slightly different from our

previous works [7], [8] as we are considering 25 test users instead of
24.

TABLE VI
PERFORMANCE ON PAINFUL DATASET, AUC. (∗) BEST RESULTS

OBTAINED USING 30% OF THE DATA POINTS, SEE TEXT FOR DETAILS.

SVM TTA TSVM∗ STM∗ TPT
[21] [45] [20] EMD Fisher DE DE-SVs DE-SVs-Oracle

75.6 76.5 73.7 76.7 77.6 77.3 76.6 78.3 78.3

Fig. 11. PAINFUL dataset. AUC vs average time (in logarithmic scale)
when training a target classifier for different unsupervised personalization
methods. Results for TSVM [45] and STM [20] are reported considering
different percentage of source data samples. Our method guarantees the
best performance and the shortest training time.

Computational Cost. The last part of our experimental
evaluation is devoted to compare TPT with state-of-the-art
approaches in terms of computational times. In Fig. 11 we
plot the AUC with respect to the training time for TPT and
the methods whose code is available on line, i.e. TSVM
and STM. Note that, for TPT, the only computational time
involved in the personalization process with respect to a
new target user is Phase 3 of Algorithm 1. Our experiments
ran on a 4 Cores 2.40GHz CPU machine. In [21] Chen et
al. reported the training time for TTA on PAINFUL (17.6
minutes) but they did not mention the workstation they
used, thus the results are not directly comparable. From
Fig. 11 it is clear that both TSVM and STM scale poorly
as the number of training samples increases. For instance,
using only 10% of the source samples, TSVM needs 17
minutes on average for training a personalized classifier,
STM 18 hours and TPT only less than a second. Even
if the accuracy of all the methods are comparable in this
challenging dataset, our approach significantly outperforms
all the other algorithms in terms of computational cost.

V. CONCLUSION

In this paper we proposed Transductive Parameter Trans-
fer, a framework for building personalized classification
models, and we demonstrated its effectiveness on three
different application domains: accelerometer-based gesture
recognition, pain classification from facial expressions and
AU detection. The proposed method is based on a re-
gression framework which is trained to learn the relation
between the unlabeled data distribution of a given person
and the parameters of her/his personalized classifier. We
experimentally showed that our TPT outperforms both user-
independent and previous domain adaptation approaches
and achieves state of the art performance on public bench-
marks. As far as we know, this is the first transductive pa-
rameter transfer approach in transfer learning literature. The
main advantage of our method is that, using a pre-trained
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regression function, its computational cost is much lower
than other domain adaptation algorithms. This makes TPT
an appealing candidate for building personalized systems.
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