## Effects of Regulation on Innovation in the Information and Communications Sector

Johannes M. Bauer Michigan State University Woohyun Shim University of Trento

#### TPRC 40 Arlington, VA, September 21-23, 2012

## Background and goals

- Regulatory economics and practice, until recently paid much more attention to static efficiency than to issues of innovation
  - Regulatory process and innovation (Bailey, 1974; Prieger, 2002, 2007, 2008)
  - Price cap regulation and investment (Greenstein at al., 1995; Ai & Sappington, 2002)
  - Unbundling, net neutrality and innovation (Bourreau and Doğan; 2001; van Schewick, 2010; Reggiano & Valletti, 2011)
- Paper aims at examining whether regulation has detectable effect on sector innovation activity

## Overview

- Conceptual framework
- Empirical approach and findings
- Policy implications

#### **Conceptual framework**

## **Re-conceptualizing innovation**

- Traditional view (OECD Oslo Manual, 2005)
  - production process, product, good, or service
  - marketing method, organizational method
- Innovation as an evolutionary process
  - Innovation as re-combination of known elements
    (Nelson & Winter, 1982, Arthur, 2009, Antonelli 2010)
  - Digital economy: continuous experimentation—realtime feedback—rapid sharing—replication of successful models (Brynjolfsson, 2012)
- How does regulation influence this process?

# Regulation and innovation decisions: a microfoundation



## Heterogeneity of incentives

- Asymmetric regulation influences innovation incentives of different players in positive and negative ways
  - Affects timing and direction of innovation (e.g., both incumbents and new entrants have an option to wait)
  - Creates trade-offs between innovation incentives of players (e.g., content providers, network operators)
- Innovation occurs in many forms and the design of regulation influences them differently
  - Open access to platforms supports modular types of innovation but may complicate coupled innovations
- Feedbacks in ICT system render overall effects difficult to gauge analytically

#### Innovation types, enabling conditions



## Selected conjectures

- Type I modular innovation processes are enhanced by a regulatory framework that reduces transaction and adaptation costs
- Type II radical innovation processes are facilitated by a regulatory framework that allows temporary higher innovation premiums
- Type III incremental but coupled innovations are facilitated by a framework that permits differentiation of network access and services
- Type IV incremental but coupled innovations are facilitated by a framework that allows differentiation and temporary exclusive agreements
- Overall regulatory density reduces experimentation opportunities and dampens innovation (system effect)

#### **Empirical approach and findings**

#### Modeling governance arrangements



R ... regulatory instruments, X ... external, control factors, I ... innovation

## Modeling approach

General estimation model

 $I_{it} = \alpha_{it} I_{it-1} + \beta_1 R_{it} + \delta X_{it} + e_{it}$ 

- $\begin{array}{ll} \mathsf{I}_{\mathsf{it}},\,\mathsf{I}_{\mathsf{it}-1} & \text{Innovation activity in country i at time t, t-1} \\ \alpha,\,\beta_{1,}\,\beta_{2,}\,\delta & \text{Parameters} \\ \mathsf{R}_{\mathsf{it}} & \text{Regulatory density in country i at time t} \\ \mathsf{X}_{\mathsf{it}} & \text{Independent and control variables} \end{array}$
- Dynamic panel estimation, instruments to overcome problems of endogeneity
- Examination of data for non-linear effects of regulatory density

## Data

- Data for 32 countries (EU-27, AU, CH, JP, SG, US), 1997-2010 (up to 448 observations)
- Dependent variables: innovation proxies
  - Network process innovation (adoption of firstgeneration broadband)
  - Service and application innovation (secure servers)
- Independent variables
  - Components of Regulatory Density Index 2012
  - Economic and socio-demographic variables

## **Regulatory Density Index**

- 41 components (fixed, mobile, NGN, market entry, general regulation)
- Scores each component on a 0-1 interval, based on stringency of regulatory constraint
- Annual data, 1997-2010 (NGN only 2007-2010)



Source: Polynomics, 2012

## Selected findings

| Variable                        | Fixed BB/100 | Fixed BB/100 | Fixed BB/100 | Servers/100 | Servers/100 | Servers/100 |
|---------------------------------|--------------|--------------|--------------|-------------|-------------|-------------|
| (Someore (100)                  | 0.8267***    | 0.8332***    | 0.8374***    | 1.1038***   | 1.1014***   | 1.0793***   |
| (Servers/100) <sub>t-1</sub>    | (0.0359)     | (0.0463)     | (0.0318)     | (0.0361)    | (0.0392)    | (0.0416)    |
| Total regulation                | -3.5179*     |              |              | -0.0019*    |             |             |
|                                 | (2.0549)     |              |              | (0.001)     |             |             |
| (Total regulation) <sup>2</sup> | 0.1972*      |              |              | 0.0001*     |             |             |
|                                 | (0.1121)     |              |              | (0.0001)    |             |             |
| Price regulation                |              | -16.5032**   |              |             | -0.0082***  |             |
|                                 |              | (7.5028)     |              |             | (0.0031)    |             |
| (Price regulation) <sup>2</sup> |              | 3.1228**     |              |             | 0.0017***   |             |
|                                 |              | (1.3938)     |              |             | (0.0006)    |             |
| Entry rogulation                |              |              | -3.322*      |             |             | -0.0079***  |
|                                 |              |              | (1.7612)     |             |             | (0.003)     |
| (Entry regulation) <sup>2</sup> |              |              | 0.3243*      |             |             | 0.0007***   |
|                                 |              |              | (0.1704)     |             |             | (0.0003)    |
|                                 | 17.5306***   | 19.1458***   | 18.1091***   | 0.0161***   | 0.0117***   | 0.0202***   |
|                                 | (2.9368)     | (4.5989)     | (2.6422)     | (0.0036)    | (0.0038)    | (0.0047)    |
| Urban nonulation rate           | 0.8728***    | 0.4195       | 0.8387***    | 0.0007      | 0.0006      | 0.0009      |
|                                 | (0.3090)     | (0.4513)     | (0.2287)     | (0.0008)    | (0.0008)    | (0.0008)    |
| χ <sup>2</sup>                  | 3863.90      | 1995.92      | 4355.98      | 2269.56     | 2201.35     | 1742.97     |
|                                 | p>0.001      | p>0.001      | p>0.001      | p>0.001     | p>0.001     | p>0.001     |
| N                               | 232          | 232          | 232          | 300         | 300         | 300         |

Note: Standard errors in parentheses. \*, \*\* and \*\*\* denote significance at 10%, 5% and 1%, respectively.

#### Regulation "elasticities" (at sample means)

| Dependent variable: fixed broadband connections (Type II) |                                                   |                                                      |                  |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------|--|--|--|--|--|
|                                                           | Fixed/100                                         | Fixed/100                                            | Fixed/100        |  |  |  |  |  |
| Total Regulation                                          | -0.0503*                                          |                                                      |                  |  |  |  |  |  |
| Price Regulation                                          |                                                   | -0.3030**                                            |                  |  |  |  |  |  |
| Entry Regulation                                          |                                                   |                                                      | -0.0132*         |  |  |  |  |  |
| Dependent variable: secure servers (Type III)             |                                                   |                                                      |                  |  |  |  |  |  |
|                                                           | Dependent variable: se                            | ecure servers (Type III                              | )                |  |  |  |  |  |
|                                                           | Dependent variable: se<br>Servers/100             | ecure servers (Type III<br>Servers/100               | )<br>Servers/100 |  |  |  |  |  |
| Total Regulation                                          | Dependent variable: se<br>Servers/100<br>-0.0517* | ecure servers (Type III<br>Servers/100               | )<br>Servers/100 |  |  |  |  |  |
| Total Regulation<br>Price Regulation                      | Dependent variable: se<br>Servers/100<br>-0.0517* | ecure servers (Type III<br>Servers/100<br>-0.0090*** | )<br>Servers/100 |  |  |  |  |  |

Note: \*, \*\* and \*\*\* refer to significance level of 10%, 5% and 1% of the respective parameter estimates.

## **Discussion and caveats**

- Innovation theory and empirical evidence suggests that more ubiquitous and intrusive regulation (higher "regulatory density") slows innovation experiments
- Evidence that this relation is non-linear and asymmetric: less and more regulation can increase innovation performance compared to the sample mean but less regulation has a stronger effect
- Preliminary tests using other innovation metrics (IPTV, FTTH, 3G/LTE) were constrained by limited numbers of observations (and did not show strong results)
- Analysis focuses on aggregated measures of regulatory intervention. Effects at the level of single components are difficult to establish and may be unstable.

## **Policy implications**

## **Policy implications**

- 1. Where choices between more intrusive and less intrusive instruments exist, the latter seem to have advantages from an innovation perspective
- 2. Regulatory design needs to take the multiplicity of innovation types into account and realize that they are facilitated by different conditions
- 3. Because no single framework can support all types of innovation equally, trade offs should be evaluated explicitly
- 4. Institutional diversity therefore may be a good meta-strategy to enable diverse innovation