Declarative Specification of Z39.50 Wrappers
Using Description Logics*

Yannis Velegrakis'**, Vassilis Christophides?, and Panos Constantopoulos®?
! Computer Science Department, University of Toronto,
Toronto, Ontario, Canada M5S-3H5
velgias@cs.toronto.edu
2 Institute of Computer Science, FORTH,
Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece
3 Department of Computer Science, University of Crete,
GR 71409, Heraklion, Greece
{christop, panos}@ics.forth.gr

Abstract. 739.50 is a client/server protocol widely used in digital li-
braries and museums for searching and retrieving information spread over
a number of heterogeneous sources. To overcome semantic and schematic
discrepancies among the various data sources the protocol relies on a
world view of information as a flat list of fields, called Access Points
(AP). One of the major issues for building Z39.50 wrappers is to map
this unstructured list of APs to the underlying source data. Unfortu-
nately, existing Z39.50 wrappers have been developed from scratch and
they do not provide high-level mapping languages with verifiable prop-
erties. In this paper, we propose a Description Logic based toolkit for
the declarative specification of Z39.50 wrappers. We claim that the con-
ceptualization of AP mappings enables a formal validation of the query
translation quality and therefore ensures the quality of the retrieved data.
Finally, it allows to tackle a number of Z39.50 pending issues (e.g., meta-
data retrieval, query failures due to unsupported APs, etc.) by enriching
the generated Z39.50 wrappers with a number of added-value services
such as conceptual structuring of flat Z39.50 vocabularies and intelligent
739.50 query assists.

1 Introduction

With the advances in digital processing and communication technologies an
increasing number of organizations and individuals are using the Internet for
publishing, broadcasting, and exchanging information all over the world. The
ability to share, interpret, and manipulate information from multiple sources is
a fundamental requirement for large scale applications e.g., digital libraries and
museums. A widely used protocol for searching and retrieving information in a

* This work was partially supported by the European project AQUARELLE (Telemat-
ics Application Programme IE-2005) and the CIMI Interoperability Testbed project.
** Work done while the author was at the ICS-FORTH.

S. Abiteboul, A.-M. Vercoustre (Eds.): ECDL’99, LNCS 1696, pp. 383-F02] 1999.
© Springer-Verlag Berlin Heidelberg 1999

384 Y. Velegrakis, V. Christophides and P. Constantopoulos

distributed environment is Z39.50 [2]. To achieve interoperability [41], Z39.50
(Version 3) relies on (i) standard messages, formats, and procedures governing
the communication of clients and servers (system interoperability), (ii) a world
view of information as a flat vocabulary of fields, called Access Points that
abstracts representational details of source data (semantic and schematic inter-
operability), and (iii) basic textual search primitives to express Boolean queries
in the form of field-value pairs (functional interoperability).

In order to execute Z39.50 queries, sources should wrap their actual data
organization, format and access methods according to the Z39.50 specifications
established for a specific application, community, etc. These specifications are
described in the various profiles (i.e. metadata) proposed by national or interna-
tional bodies (e.g., Library of Congress, CIMI, etc.). It should be stressed that
the quality of the established mappings between the source and the Z39.50 view
of information is fundamental in order to ensure the quality of the retrieved data
(i.e. accuracy, consistency, completeness, etc.). Unfortunately, existing Z39.50
wrappers are developed using some programming language and they do not pro-
vide abstract mapping languages with verifiable properties [42[TT]43]. In this
paper, we advocate a Description Logic framework [9] (such as proposed in the
context of the DARPA KSE [39]) for the declarative specification of Z39.50 wrap-
pers using high-level concept languages. We claim that modeling the required
mappings as first-class citizens, instead of hard coding them in the wrappers (i)
allows the formal validation of the translation quality (e.g., ill-defined mappings,
inappropriate APs); and (ii) opens unexpected opportunities to tackle a num-
ber of Z39.50 pending issues (e.g., metadata retrieval, query failures due to not
mapped APs, multiple answer sets handling, etc.).

Building a wrapper for an information source according to a Z39.50 profile
(e.g., for digital libraries [32]31], museums [44]20)], etc.) implies the translation
of (i) the Z39.50 Access Points (AP) to the underlying source data structure and
semantics, (ii) the Z39.50 Boolean filters to the source query primitives, and (iii)
the returned source data from their original format to a predefined Z39.50 record
syntax (e.g. GRS-1, XML). For loosely structured sources (e.g., Information
Retrieval Systems) wrapping is relatively simple. It essentially requires to define
some renaming mappings from the APs to the source data attributes, tags, etc.
(e.g., the AP AU to the field author, etc.). However, for highly structured sources
(e.g., Database Management Systems, Knowledge Base Systems) the translation
process is considerably more complex. This is mainly due to the fact that there
exists a significant mismatch between the Z39.50 flat view of information and
the underlying source data model (e.g. relation or class based). In this context,
what is really needed is to define for each AP a view on the source data.

To address this issue we introduce an intermediate level between the Z39.50
and the source world, based on advanced knowledge representation and reason-
ing support, specifically Description Logics (DL). DL provide declarative lan-
guages to represent and reason about interrelated sets of objects using modeling
primitives such as concepts, roles, and individuals. Starting from a set of prim-
itive concepts and roles representing source conceptualization, we capture the
semantics of the AP mappings as derived concepts formed by primitive ones
and standard DL concept operators [B]. Since DL can serve both as knowledge
representation languages and as query languages [8140/14], derived concepts es-

Declarative Specification of Z39.50 Wrappers Using Description Logics 385

sentially act as views [L5] against which Z39.50 queries are evaluated with source
data. Our contribution is twofold : (i) we propose a toolkit for the declarative
specification of Z39.50 wrappers using standard DL reasoning mechanisms [22];
and (ii) we enrich the generated Z39.50 wrappers with a number of added-value
services such as conceptual structuring of flat Z39.50 vocabularies and intelli-
gent 739.50 query processing in order to facilitate metadata retrieval and avoid
embarrassing query failures due to unsupported, i.e., not mapped, APs.

The rest of the paper is organized as follows. In Section [2 we give an ex-
ample of a cultural information source and describe the encountered problems
to wrap it according to a digital museum Z39.50 profile. In Section [B] we briefly
recall the core Description Logic (DL) model and we show how it can be ap-
plied for the declarative specification and validation of Z39.50 AP mappings.
Section @ presents the Z39.50 query processing in our DL framework and Sec-
tion Bl elaborates on the offered added-value wrapping services. The architecture
of the Z39.50 wrapper toolkit is presented in Section [l Finally, we conclude and
discuss future work in Section [7]

2 An Example of a Cultural Information Source

In this section we describe the contents and structure of a cultural information
source that will be used as running example in the rest of the paper. We focus
on the mismatch of the information conceptualization in our test database and a
Z.39.50 profile for Digital Museums [44]120], as well as on the consequent problems
we have encountered in order to develop a Z39.50 wrapper in the context of the
AQUARELLE and CIMIzit projects [36/35].

2.1 The CLIO System

As a testbed we use the CLIO cultural documentation system, developed at the
Institute of Computer Science, Foundation for Research and Technology-Hellas
(ICS-FORTH) in close cooperation with the Benaki Museum, Athens and the
Historical Museum of Crete, Heraklion. CLIO supports the recording and man-
agement of an evolving body of knowledge about ensembles of cultural goods
and addresses the needs of museum curators and researchers. The functional ker-
nel of CLIO is the Semantic Index System (SIS) developed by ICS-FORTH [21].
SIS is a persistent storage system based on the object-oriented semantic network
data model TELOS [37].

Figure [illustrates some features of our example data source inspired by
the CLIO system namely simple and multiple classification as well as multi-
valued and optional attributes. A museum object is represented as an instance
of the class “MuseumObject”. It may have (optional attributes) an owner (class
“Owner”) and be constructed with the use of one or more (multi-valued at-
tributes) materials (class “Material”), processes (class “Process”) and techniques
(class “Technique”). Each museum object is associated a series of events (class
“Event”) characterized by their kind, date and involved actor. For instance, the
saber of Androutsos (a hero of the 1821 Hellenic Revolution) is made of shaped
silver (multiple instantiation) and it was constructed by Filimon in 1815. Al-
though not illustrated in our example, SIS-TELOS also supports simple and
multiple inheritance, unbounded classification, and treats attributes as first class
citizens classified on their own.

386 Y. Velegrakis, V. Christophides and P. Constantopoulos

Creation

C’O[‘
——— Instance of
———= Attribute

Fig. 1. An Example of a Cultural Information Source

2.2 7Z39.50 Wrapping for Digital Museums

739.50 [2] is a session oriented and stateful application protocol, based on the
client-server architecture. To overcome semantic and schematic discrepancies
among the various data sources, Z39.50 relies on a common information model
shared by all clients and servers. It consists of a flat list of fields, called Access
Points (AP) (or more precisely Use Attributes), on which queries are expressed.
For instance, in the CIMI [20] and AQUARELLE [44] profiles, the supplied APs
correspond to general information categories like People (specific persons or cul-
tural groups), Dates of many sorts (including dates of creation, acquisition, exhi-
bition), Places (e.g. place of creation, places associated with an event, galleries,
provenance), Subject (exact description of depicted material), Style (including
movement and period), Method (including process and techniques), Material,
ete. [29)].

This vocabulary of fields is employed by a client in order to search and iden-
tify records from the underlying sources and next, to retrieve some or all of
them. Z39.50 queries are formulated using Boolean connectors (and, or, and-
not), search terms (i.e. Use attribute-value pairs), and qualifiers specifying lex-
icographical comparisons (e.g., greater than), truncations (e.g. right, left), etc.
Going back to our cultural scenario, the following query searches for all the
museum objects related with Androutsos, that have been created after 1887 :

Q1: PersonalName="“Androutsos” and
(DateOfCreation=1887 Relation="“GreaterThan”)

According to Figure [l the person Androutsos might be the creator (i.e. the
actor involved in a creation event), or the owner of the object. This implies
that a query on the AP PersonalName should be translated by the wrapper
into queries on the source Actor and Owner classes. Furthermore, a query on
the AP DateOfCreation should be translated into queries on the Time_Span
class and the associated Object_Event and Kind classes. Finally, the returned
museum objects information, should be formatted/converted by the wrappers

Declarative Specification of Z39.50 Wrappers Using Description Logics 387

according to a common agreed record syntax (e.g. GRS-1, XML) and structure
(e.g., elements Objectld, Title, Creator, etc.).

We believe that the underlying 739.50 information model is more suitable to
query loosely structured text bases than highly structured data sources. Indeed,
due to the significant mismatch between the Z39.50 and the source information
model, most of the existing structure and semantic richness of the sources is not
taken into account during querying while wrapping becomes considerably more
complicated. It becomes clear that an AP may be translated to a source query
on one or more classes or relations using one or more attribute selections, joins,
etc. There is a wide range of 7Z39.50 mapping cases (see below) and nothing
guarantees that the semantics of the specified views correspond to the intended
meaning of the APs in the Z39.50 profile: it may be included in the original
AP meaning, partially overlapped, disjoint, etc. This is typically the kind of
information that is missing from existing Z39.50 wrappers in order to verify the
quality of the retrieved data (i.e. accuracy, consistency, completeness, etc.). Two
7.39.50 wrapping issues are worth further elaboration and they will be addressed
in the rest of the paper.

Unsupported Access Points: Since the AP meaning is defined in a profile without
prior knowledge of the source contents, it may correspond to information only
implicitly represented in the source or it may not correspond at all to any source
information. For example, our cultural source documents objects from the gun
collection kept in the Benaki Museum and although not explicitly stated, this
information could be used to answer queries on the AP Location. On the other
hand, the AP Protection Status, dealing with buildings and monuments, is not
at all applicable. According to the protocol both APs are considered as unsup-
ported in our source and queries containing them will fail and return diagnostic
messages. For large scale applications where queries are generated by a 739.50
client without a knowledge of wrappers’ metadata (i.e. mappings) it is very likely
to exist at least one unsupported AP per source. This will result in embarrassing
query failures and users risk to obtain no answer from the sources. A commonly
used approach to cope with this problem is to omit the unsupported APs from
the broadcasted query and try to answer only the supported part. Obviously
with this approach users are not aware if the returned answers resulted from
the execution of the full query or from a part of it, while the various Z39.50
wrappers behave in an unpredictable manner.

Fized collections of Retrieved Objects: The information returned in response to
a client request is always associated with a specific data collection in the source
(e.g. a persistence root). In the rest of the paper we will call this root as central
concept. No matter what the queried APs are, the answer always correspond to
central concept instances (e.g., museum objects) appropriately converted into a
record structure having a fixed number of fields (also defined in the profile as
Record FElements). This implies that all the queried fields are supposed to be
connected in a source with the Z39.50 central concept. However, this is not the
case with structured sources (relational or object-oriented) where multiple col-
lections are supported and data relationships are not always explicitly stated in
the schema (using external keys or object paths). Furthermore, even when such
paths are explicitly stated, Z39.50 profiles usually support APs for expressing

388 Y. Velegrakis, V. Christophides and P. Constantopoulos

full-text queries that require navigation over sets of paths. For instance, we may
use the AP Any, to query on term “Androutsos”, without specifying what ex-
actly the related APs are : “Androutsos” may correspond in our cultural source
to a person owning an object, a person creating an object, a geographical loca-
tion, etc. Unless the native query language of the source supports generalized
path expressions [18|[19], this kind of mappings cannot easily be expressed in
structured sources. It is up to the Z39.50 wrapper administrator to decide query
evaluation under these circumstances in a more or less ad hoc way.

3 Declarative Specification of Z39.50 Wrappers Using DL

Description Logics (DL), also known as terminological logics, has been inten-
sively studied for more than a decade in the field of Knowledge Representa-
tion and Reasoning Systems (KRRS). DL provide declarative languages for the
representation and reasoning about classes of objects and their relationships,
encompassing other well-known formalisms such as entity-relationship or class
inheritance models [17]. Recently DL have received considerable attention in the
context of information integration systems [3I33J16,25]6] since it was proved to
provide flexible formalisms to model and reason over a large number of data
integration views [34]. We follow the same approach to declaratively define the
required AP mappings as views over source data. It should be stressed that,
compared to previous work on data integration, our context is quite different:
(i) Z39.50 wrapping involves only one source at a time (vs. mediation of several
sources); (i) Z39.50 world view of information is intrinsically flat (vs. middle-
ware structured models); and (iii) Z39.50 wrappers support some query process-
ing (vs. simple translations of queries and data). In the sequel, we briefly recall
the core DL model that we use to cope with the various Z39.50 wrapping issues
presented in the previous section and provide Z39.50 wrappers with formally
verifiable mapping specifications.

3.1 The Core Description Logic Model

The main modeling primitives of Description Logics (DL) are concepts, roles, and
individuals. A concept describes a class of elements (individuals) in the domain
of interest and is defined by the conditions that must be satisfied by the elements
in the class. A role describes a relationship between two individuals. The two
basic components of a DL system are the terminological box (TBox) and the as-
sertional box (ABox). The former contains the concepts (intentional knowledge)
and the latter contains the individuals (extensional knowledge). There exist two
types of concepts: Primitive and Derived. The definition of a primitive concept
specifies only the necessary conditions for an individual to be an instance of it.
On the other hand, the definition of a derived concept states the necessary and
sufficient conditions for an individual to be instance of it. This implies that an
individual has to be explicitly defined as instance of a primitive concept, while
instances of derived concepts are inferred by the DL system.

The interpretation of a DL knowledge Base X' is Z = (Z(A),Z(-)) where
Z(A) denotes a non-empty set of values (the domain) and Z(-) an interpretation

Declarative Specification of Z39.50 Wrappers Using Description Logics 389

function, mapping every concept to a subset of Z(A), every role to a subset of
Z(A)xZI(A), and every individual to an element of Z(A) such that Z(a)#£Z(b) for
different individuals a, b (Unique Name Assumption). Intuitively, the interpre-
tation of a concept C' (denoted as Z(C)) is the set of objects that are known to
belong to that concept. A concept C is said to be subsumed by another concept
C, (denoted as C1<C5) if and only if Z(C) C Z(Cy). Based on this subsumption
relation, a set of concepts can form a taxonomy having a bottom (L) and top
(T) concept.

Concrete Mathem.
Name Form Repr/tion|Semantics
Concept Name A A Z(A) CZ(4)
Top TOP T A
Bottom BOTTOM L [
Union (OR C D) AUC |{di|di € Z(A)UI(C)}
Intersect (AND C D) ANC |dildi e Z(A)NZ(C)}
Not (NOT A) -A {d1|d1 ¢ Z(A)}
Existential (SOME R C) JR.C {d1|3d2 : (d1, dz) S I(R)/\
Quantification d2 € Z(C)}
Universal (ALL R C) VR.C {d1|Vd2 : (d1, dz) (S I(R) —
Quantification d2 € Z(C)}
OneOf (ONEOF ¢, j4,..0| {4, 4,-.} {4, 4,---}
Role name R: A B alR|B |Z(R) CZ(A) x I(B))
Reverse (REVERSE R) R™Y [{(d1,d2)|(d2,d1) € Z(R)

Table 1. Concept and Role forming operators

The part of the TBox that contains the primitive concepts is called schema
part while derived concepts form the wview part [I5]. The TBox-schema part

consists of a finite set of axioms having one of the forms: A<D, R<CxD, where
A, C, D are primitive concepts, and R is a role (note that roles have restricted
to and from values). The TBox-view part consists of a finite set of concepts
definitions having the form A=F where A is a derived concept and F is a concept
expression formed by other concepts and the operators shown in Table[l. Cycles
in concept definitions are not allowed (see [38] for formal definitions). In the
next subsection we will explain these operators through examples illustrating the
mappings of Z39.50 APs to our cultural source. Finally, disjointness of classes in
the TBox is given by axioms of the form: A||C (i.e., Z(A) NZ(C) = 0).

The ABox is defined from a finite set of declarations having one of the forms:
C(a) and R(a,b). The first one (unary predicates) declares that individual a
belongs to the interpretation of the primitive concept C' and the second one
(binary predicates) declares that there exists a role R from a to b (belonging
respectively to the interpretations of concepts C' and D in the definition of R).
The main reasoning services [22] offered by a DL system X' are the following;:

— Concept Satisfiability (X'~C=1) checking if a concept has not an empty
interpretation,

390 Y. Velegrakis, V. Christophides and P. Constantopoulos

— Subsumption Checking (X'=C} éCg) checking if a concept Cy subsumes
017
— Instance Checking (¥'=C/(a)) checking if an individual a belongs to the
interpretation of a concept C.
The above core model corresponds to an almost standard DL framework [5], ac-
tually supported by several DL System e.g., CICLO, FaC’IE, KRI@, HAM-
AL, etc.

3.2 DL Concept Languages for Z39.50 AP Mappings

In a very natural way, source structure and semantics can be represented as
primitive concepts and roles, while the AP mappings as derived concepts (i.e.
views) defined on top. Figure 2lillustrates the primitive concepts (TBox-schema
part) representing our cultural source schema given in Figure[l] while the derived
concepts (TBox-view part) correspond to the established mappings of the CIMI-
AQUARELLE profile APs [20/44]. The data of our cultural source correspond
to the individuals (ABox) of the DL System. Note that this is only a logical
view of information from the Z39.50 wrappers (see Section [) and there is no
need to actually load source data into the DL system (virtual Abox). In the
following examples we illustrate the expressive power of the proposed DL concept
language (see Table[]) to capture the various kinds of translations involved in
7.39.50 wrapping for structured sources (see Section).

Ezxample 1: Perhaps the simplest case to map an AP is when its semantics
corresponds exactly to one concept of the source schema. For instance, the AP
Date is translated as follows :

Date = Time_Span

Ezample 2: In most practical cases, APs should be mapped by combining more
than one source concepts using the DL Union and Intersect concept forming
operators. For instance, information about persons in our cultural source is rep-
resented by the concepts Actor and Owner, and the AP PersonalName is mapped
as follows :
Personal Name = Actor U Owner
Similarly, the mapping of the AP Method is defined as :
Method = Process M Technique
Furthermore, mappings of abstract APs like Who describing any personal or
corporate name that can be found in our source, are defined by using other AP
derived concepts such as :
Who = Personal Name LI CorporateName
Any = Whol Whatll Whenld Where
Finally, APs like Any, for full-text queries are easily mapped by considering the
definitions of abstract APs like Who, What, When and Where (the 4W APs).
! The only subtle issue here is the introduction of restricted and inverse roles as in [26].
2 http://www-ensais.u-strasbg.fr/LIIA /ciclop/ciclop.htm
3 http://www.cs.man.ac.uk/ horrocks/FaCT/
4 http://www.dfki.uni-sb.de/ tacos/kris.html
® http://kogs-www.informatik.uni-hamburg.de/ moeller /ham-alc/

Declarative Specification of Z39.50 Wrappers Using Description Logics 391

TBox (View part)
H Date

Method /
Protection Status .
TBox (Schema part)

MuseumObject hesEvent

Actor

Creation

ABox

Fig. 2. Modeling an Information Source and Z39.50 APs mappings in DL

Ezxample 3: More complicated situations arise when the AP mapping requires a
traversal over the roles associated with aggregated source concepts. For example,
to map the AP DateOfCreation we need to define the following derived concept
using the DL Inverse Role operator :

DateO fCreation = I(happenedIn)~t.(Jof Kind.{“Creation’})

The above expression has three parts: (i) the bracket expression corresponds to
a concept having as interpretation only the individual “Creation”, i.e. subsumed
by Kind, (ii) the parenthesis expression represents the related creation Events,
and (iii) the whole expression captures the Dates associated with these events.
Note that the restriction of a role to and from values obviates the need to verify
that the returned individuals actually belong to the interpretation of Date.

Example j: For APs corresponding to information not explicitly stated in a
source, the DL OneOf concept forming operator is used to translate them. For
instance, although not given in our example source, it is known that all ob-
jects belong to the Benaki Museum (Athens) gun collection, and hence the APs
CorporateName, Location and Collection are mapped as follows :

CorporateName = {“Benaki Museum'}

Location = {“Benaki Museum Athens"}

Collection = {“Benaki Gun Collection’}
This implies that CorporateName, Location and Collection are concepts whose
interpretation contains only one individual, respectively “Benaki Museum”, “Be-
naki Museum Athens” and “Gun Collection”.

Example 5: In the case where there is no information in the source corresponding
to a specific AP, the related derived concept is defined to be equivalent either
to the Bottom i.e. the concept with an empty interpretation or the Top i.e. the

392 Y. Velegrakis, V. Christophides and P. Constantopoulos

concept whose interpretation contains all the individuals. The decision depends
on the expected precision and recall: the former favors precision while the latter
recall. More precisely, according to the semantics of APs in a Z39.50 profile,
we consider that the Top for AP mappings is the AP concept Any previously
defined (see Example 2). For instance, the AP ProtectionStatus which is used
for preserved buildings and cannot be mapped to our cultural source of museum
objects, is translated as follows :
ProtectionStatus = L (or ProtectionStatus = Any)

In both cases, wrappers are able to smoothly incorporate unsupported APs into
the query processing (see SubSection [5.2)) and avoid embarrassing query failures.

3.3 Formal Validation of Z39.50 Wrapping Quality

Having defined the mappings of the Z39.50 APs as derived concepts on top
of a source schema (i.e. views), standard DL reasoning services like Concept
Satisfiability can be used to infer if some or all of the APs mappings are ill-
defined. Consider, for instance, that the concept Material of our culture source
is disjoint with the concepts Technique and Process (see Figure [2). Then, the
following mapping of the AP Method (see Example 2) is inconsistent:
Method = Material M Process 1N Technique

Indeed, due to class disjoiness the AP derived concept Method describes a neces-
sarily empty set. In our DL framework we can formally check whether X'~ M ethod
= 1, i.e Method has a contradictory description (i.e. intentional semantics). More
generally, we can verify the consistency of all the established mappings (i.e., that
are well defined and not mapped to the bottom) without actually accessing the
source data, by simply checking whether the TBox has at least one model: X'H~.
This kind of quality services are not supported by existing 7Z39.50 wrappers.

To conclude this section we should note that modeling the AP mappings as
DL derived concepts allows to develop Z39.50 wrappers with formally verifiable
properties. More precisely, (i) APs whose meaning is not at all or only implicitly
represented in the source can be effectively mapped and smoothly incorporated
into the query processing; and (ii) consistency of the established APs mapping
can be easily checked without accessing the source data. These added value
services are quite useful for profile developers, 7Z39.50 wrappers administrators
and end-users.

4 739.50 Query Processing Using DL

Since DL can serve both as a knowledge representation language and as a query
language [8J4014], Z39.50 queries can also be modeled as derived concepts. More
precisely, a query can be seen as a description of the necessary and sufficient
conditions that have to be satisfied by the individuals forming its answer set, i.e.
its interpretation. Conversely, primitive (i.e., source) or derived concepts (i.e.,
AP mappings) can be used for data querying by considering their interpretation.
In the sequel, we present how the Z39.50 Boolean filters can be (i) translated by
the wrappers using the same DL concept language employed to map the Z39.50
APs, and (ii) rewritten by taking into account the defined AP views and the
fixed central concept of the data actually returned by a source (see Section [2).

Declarative Specification of Z39.50 Wrappers Using Description Logics 393

4.1 The Core Z39.50 Query Languages

As we have seen in Section 2, Z39.50 queries are essentially composed of search
terms with APs and qualifiers for comparisons, truncations, etc., eventually com-
bined using Boolean connectors. Consider, for instance, the following simple
query (i.e. no qualifiers) :

Q2: PersonalName = “Androutsos”

Recall that PersonalName is an AP, mapped as derived concept (Cap) to the
Actor and Owner concepts, and “Androutsos” a value considered as individual
(a). Q2 can be translated into a basic query to the DL knowledge base X using
the Instance Checking reasoning service (Cap(a)) :

YEPersonal Name(“Androutsos”)

If the individual “Androutsos’ is in the interpretation of the concept Person-
alName (i.e. the union of the Actor and Owner interpretations), the knowledge
base returns a positive answer and the answer set (i.e., query interpretation) con-
tains only the individual “Androutsos”’. Else the answer set will be empty. More
formally, core Z39.50 queries can be defined as DL derived concepts (Tbox-query
part) that will be interpreted with source individuals (Abox) in the following
way :

Definition 1. Given a DL knowledge base X', an Access Point derived concept
Cap and a core Z39.50 query q of the form AP = a, the answer set of q is given
by the interpretation of the concept Cy : Z(Cy) = {a € Ox | ¥ | Cap(a)},
where Oy is the set of individuals of X.

Note that query answering relies here on some form of closed world assump-
tion [27]. In the style of [23] we make the realistic assumption about complete
knowledge of the DL extensional part (i.e., source data) and thus consider in the
interpretation of concepts only their known individuals.

Now let us see how we can express Z39.50 queries using relation or truncation
qualifiers like, for instance :

Q3: PersonalName=“Andr” Truncation="“Right”

These search operators are not directly expressed in a standard DL frame-
work, but they can be captured as external functions. The DL operator TEST-C
allows to call various test functions outside of a DL system. This operator is es-
sentially an escape method from the limits of the DL expressiveness allowing to
manipulate individuals using external functions written in some programming
language (see e.g., CLASSICY [12]). A test function f gets an individual as ar-
gument and returns TRUE or FALSE if it satisfies the conditions specified in
the body of the function. The interpretation of the expression TEST-C(f) is
then all the individuals which, given as argument, the TRUE value is returned
by f. Only monotonic functions are considered in this respect. Q3 can then be
translated as follows :

I(Cq3) = {a € Ox | X |E(Personal Name N TEST-C(rtrunc. 4, ;7)) }

5 http://www.research.att.com/sw/tools/classic/classic.html

394 Y. Velegrakis, V. Christophides and P. Constantopoulos

where rtrunc.,, , » is a test function supported by our example source, which
performs right truncation on string “Andr”.

Finally, the concept forming operators M, U, and — (see Table [M) can be
straightforward used to capture the 7Z39.50 Boolean connectors and, or, and
and-not.

It should be stressed that when the search operators defined in a Z39.50
profile are not supported by the underlying source, we are confronted with the
same problems as in the case of unsupported APs. To cope with these problems
we follow the same approach presented in the previous section, allowing to map
unsupported Z39.50 search operators either to the true or false test functions.
The former favors recall, since it returns all the individuals of the queried AP
concept, while the latter favors precision, since it returns the empty set. In both
cases, wrappers are able to smoothly incorporate unsupported search operators
into the query processing.

4.2 739.50 Query Answering

Unfortunately, the above translation into DL is not sufficient to express the exact
semantics of Z39.50 queries as defined in a profile. We have seen in Section [2
that the result of a Z39.50 query is the set of related individuals belonging to
a central concept of interest (e.g., the root of museum objects in our cultural
scenario), rather than the set of individuals that belong to given AP derived
concepts and satisfy the search conditions. To cope with this problem we need
to define the central concept (C¢) in the Tbox as a derived concept (e.g. Co =
MuseumObject) and then introduce concept path expressions (Pap) connecting,
through roles, the individuals of C with the various AP concepts involved in a
query. For instance, for the AP derived concept DateofCreation used in Q1 we
consider the following path (see Figure[2) :

PpateofCreation = JhasEvent.(FhappenedIn.Time_Span)

Since DateofCreation is only a simple case and AP derived concepts are usu-
ally defined by more complex concept expressions (e.g. PersonalName), what is
really needed is to declare, for each of the involved primitive concepts (e.g. Actor,
Owner), the corresponding paths to the central concept e.g., (see Figure) :

PpersonalName1 = JhasEvent.(3hasActor. Actor)
PpersonalName2 = ﬂownedBy.Owner

The same approach is followed in order to consider the paths of composite
APs (e.g., the 4W APs) defined in terms of others. More formally :

Definition 2. A path expression Pap is a sequence of elements p = eres. .. e,
such that fori € [1,n—1] : e; € {FJU{V}UR., where R is the set of the primitive

“won

role names (suffized by “.”) and e,, € C is the set of primitive concepts.

These paths are then used during Z39.50 query translation to capture the ex-
act answer set (Canswer) With individuals of the central concept. More precisely,
we consider the following translation steps :

Declarative Specification of Z39.50 Wrappers Using Description Logics 395

1. The core Z39.50 queries are initially translated into elementary DL query
concepts as described in the previous subsection. For instance, the prelimi-
nary translation of Q1 presented in Section [2is :

Y = (Personal Name(“Androutsos”)N(Dateo fCreationMTEST-C(gt . g5,))

2. Then the obtained expressions are rewritten into an intermediate canomni-
cal form by expanding the involved AP derived concepts (Tbhox-view part)
into their constituent primitive ones and introducing the corresponding path
expressions (Pap) emanating from the central concept. For instance, the
canonical form of Q1 is :

X | ((3hasEvent.(3hasActor. Actor(“Androutsos”)U
JownedBy.Owner(“Androutsos”)))MN
3hasEvent.(3happenedIn.(Time_Span M TEST-C(gt. ge.7))))

3. The final expression of Z39.50 queries (Canswer) is then obtained by con-
sidering in the resulting canonical form only the individuals of the central
concept (Ce) as follows :

CA’rsterl = { a e OZ ‘ E':
(MuseumObject(a)r
((3hasEvent.(3hasActor. Actor(“Androutsos”))J
Jowned By.Owner (“Androutsos”))N
3hasEvent.(3happenedIn.(Time_Span N TEST-C(gt. 4e,7)))))}

It should be noted that for Z39.50 queries using full text APs like Any, we
need to consider the paths to the central concept of all its constituent source
concepts. The resulting canonical form essentially represents a set of queries
capturing the translation of generalized path expressions at the source schema
level [19] without requiring any extension of the underlying source query capa-
bilities. Furthermore, as we will see in next section, the canonical form of Z39.50
queries is a subject of optimization by the wrappers taking into account the
subsumption relationships between derived or primitive concepts.

5 Advanced Z39.50 Wrapping Services

In Section Bl we showed the benefits from modeling Z39.50 AP mappings as DL
concepts (i.e. views) in order to formally validating their consistency. In this
section we focus on the capability of DL-based wrappers to reason about the
relationships between the AP views as well as between these views and Z39.50
queries also represented as DL concepts. Specifically, we show (a) how a flat
739.50 list of APs can be organized in a subsumption taxonomy thus rendering
their underlying source-specific conceptual structure; and (b) how Z39.50 queries
can be optimized with respect to their intentional semantics without accessing
actual source data (virtual Abox).

396 Y. Velegrakis, V. Christophides and P. Constantopoulos

EeErF - .
!-WHA;- fi """""""""""""""
& R ii') WHERE
o b - S
’ ‘ =m
' ' & . ST
[Type/Classifi] [PersonalName] [Corporate Name | [Date of Creation] [Date of Publication] [Location

Fig. 3. Structuring a Flat Vocabulary of Z39.50 APs

5.1 Conceptual Structuring of Flat Z39.50 Vocabularies

Despite the simplified world view of information as a flat list of APs, Z39.50
profiles are usually developed according to an implicit conceptual structure of the
information requested by the users. Indeed, the APs defined in a profile represent
real world entities for a particular application, function, or community, at various
abstraction levels and with different relationships between them. For example, in
the CIMI-AQUARELLE profile [20/44] we can observe a wide range of APs : from
very abstract APs like Any, to general ones like What, Who, When and Where,
(the 4W APs) until more specific like Date or DateOfCreation. Making explicit
their relationships in the context of a specific source, is very useful for both end-
users and third-party metadata providers. It essentially allows to understand
why the conceptual structures of information in a source and a profile differ in
order to improve the design of APs, query precision, interpretation of results,
etc.

We rely on the DL Subsumption Checking reasoning service to organize in
a taxonomy the derived concepts capturing the AP mappings for a source. For
instance, given the definition of Date and DateOfCreation (see Section [3) it

can be inferred that DateO fCreation<Date (see [45] for formal definitions). In
the simplest case the subsumption relationships are direct consequence of the
definitions of composite AP concepts as for instance the 4W APs.
Figure[lillustrates the subsumption taxonomy of several CIMI-AQUARELLE
APs as they are mapped to our example source (Tbox-view part). This taxon-
omy serves as advanced knowledge support about wrapped sources (i.e. meta-
data) which can be exploited off-line or on-line. In the latter case the 7Z39.50
Explain servicd] can be used. Note that accessing and exchanging source meta-
data is not a simple task due to the different technologies (DBMS, KBS, etc.)
employed by the sources and the various implementation choices made by wrap-
per administrators. We believe that a DL concept language can also be used to
facilitate metadata retrieval (i.e. AP mappings) in a way commonly understood
by all clients and independent from the underlying source/wrapper technology.

5.2 Intelligent Query Processing

In Section]l we have seen that DL concept languages used to capture the schema
of a source and define Z39.50 APs mappings as views on top of it, can also be em-
ployed to express the Z39.50 queries against these views. Not surprisingly Z39.50

" A service allowing Z39.50 clients to retrieve information about servers.

Declarative Specification of Z39.50 Wrappers Using Description Logics 397

queries can then be classified into the concept taxonomy using the subsumption
relationships between them and the other primitive or derived concepts (Tbhox).
The first benefit from this classification is to determine if a Z39.50 query can be
effectively evaluated against the existing source schema and AP views. Indeed,
after the translation of Z39.50 queries into a canonical DL form, wrappers are
able to check whether the description (intention) of a query is contradictory
without accessing the source data (ABox). For instance, the following query
can be detected as inconsistent since it uses the AP ProtectionStatus mapped to
the bottom concept.

Q4: PersonalName = “Androutsos” and ProtectionStatus = “Preserved”

If now a query is semantically well-defined it can be appropriately classified
by determining the set of its immediate subsumers and subsumees, i.e. the con-
cepts found above or below in the taxonomy. This classification opens interesting
optimization opportunities since it induces a set of semantic transformations in
order to locate the exact place of concepts in the taxonomy [7]. Consider, for
instance, the following query where the derived concept Who subsumes Person-
alName (see Figure) :

Q5: PersonalName="“Androutsos” or Who=“Androutsos”

Q5 will be rewritten into the following semantically equivalent query that
will be actually executed by the source :

Q5’: Who = “Androutsos”

Recall that according to the semantics of Z39.50 queries, the result is always
composed of individuals of a central concept (C¢) like MuseumObject. Therefore
739.50 queries like Q5 are always classified under C¢ defined in the Tbox-view
part. This enables an intelligent caching of query results [24/4] by the wrappers
and a consequent optimization of Z39.50 queries. If the concept representing a
query is found to be equivalent to one already existing in the taxonomy, the
interpretation of that concept can be returned as an answer set instead of eval-
uating it. This is the case of Q5 assuming that the equivalent query Q5’ has
been previously evaluated and cached. Alternatively, the interpretations of all
the immediate subsumers have to be checked against the query conditions. This
is extremely useful, as 7Z39.50 is a stateful protocol and queries are quite often
simple refinements of previously issued ones, like for example :

Q6: Q5’° and When = 1815

In this case Q5’ subsumes Q6 and only the second part of the query needs
to be executed by the source (intersection is performed locally by the wrapper).
Finally, the results of Q6 could also be cached in the wrapper. This implies that
the cached interpretation of concept Q5 will now contain only its proper indi-
viduals i.e. those not belonging to the interpretations of its immediate subsumees
like Q6. Note that supporting several query answer sets proves to be quite ex-
pensive with current implementations of Z39.50 wrappers [42|T1]43] replicating
overlapped results.

398

6

Y. Velegrakis, V. Christophides and P. Constantopoulos

Result Set id Result Set id
& Cardinality & Cardinality

239.50 Query

DL Query

Internet

rt

(4)

Z39.50 Client
View Pal

Data Source

Description Logic

Element(5)
Mapping|

Retrieve Request Record Request

Result Record (in GRS-1) Result Record (in C)

Fig. 4. The 7Z39.50 Wrapper Toolkit Architecture

Implementing a DL-Based Z39.50 Wrapper Toolkit

The architecture of the DL-based Toolkit we have developed [45] is shown in
Figure[d It is composed of the following five modules :

Module 1 is responsible for network communication with the client and is based

on the Yaz toolkit [28]. When it receives a search request it decodes it into
appropriate C structures. More specifically, it produces the syntaz tree of the
query that is included in the search request and sends it to Module 2. When
a response has to be sent back to the client, this module is responsible for
the transformation of the answer to the appropriate network format.

Module 2 is used only during the search process. When it receives the syntax

tree of a Z39.50 query, it translates it to a preliminary DL expression (see
Section [) that is sent to Module 4 for evaluation. After the execution, it
receives the id and the cardinality of the result set (not the data themselves)
and forwards this information to Module 1 to be sent back to the client.

Module 3 is used only during the retrieval process. After receiving a Z39.50

result set id it communicates with Module 5 to get the retrieved records in
the form of C++4 structures. The task of Module 3 is then to encode the
returned C++ structures in one of the record formats defined in the Z39.50
profile (i.e. GRS-1, USMARC or XML) in order to send the retrieved records
back to Module 1.

Modules 4 and 5 essentially form the DL-based wrapper for the underlying

source (see dotted line in Figure [4). Module 4 loads the source schema and
the AP mappings (Tbox) from a configuration file while the data reside
in the source (virtual Abox) and can only be cached in the DL system.
When it receives a DL query from Module 2, it rewrites it according to the
defined AP mappings (see Section B]) and central concept of interest and
forwards the resulting expression for evaluation to the underlying source (in
our example, SIS). Finally, Module 5 converts the retrieved objects of the

Declarative Specification of Z39.50 Wrappers Using Description Logics 399

central concept by taking into account the mappings of the Z39.50 Record
Elements to the source data. Although not presented in this paper, these
mappings are defined similarly to the APs.

All modules are operational while Module 4 actually supports only the DL
Instance Checking service and sources built on top of the SIS-Telos [21]. Due to
the similarities between the DL and SIS-Telos query models, the translation of
the resulting DL query expressions into our cultural source is straightforward.
We plan to extend this interface of Module 4 for other data source technolo-
gies, especially relational and object DBMSs (SQL, OQL), as already studied
in [TO/I330).

To conclude, the modular architecture of the proposed toolkit allows to signif-
icantly reduce wrapper development and maintenance costs. First, the DL-based
Module 4 can be reused in order to wrap the same source according to multiple,
possibly overlapping profiles (e.g., AQUARELLE-CIMI and Dublin Core). This
obviate the need to merge different Z39.50 profiles into one, in order to be sup-
ported by the existing wrappers [42[11]/43]. In our approach, the profile becomes
a characteristic of the client query, rather than a characteristic of the source.
Second, the same Z39.50 server can support several wrapped sources. This is
due to the fact that Modules 1,2 and 3 need not be aware of the Z39.50 APs
(or Element) mappings to the various source data. This information is requested
only by Module 4, i.e. the source wrapper. Hence, a server can support simulta-
neously sources of different technology, as well as 7Z39.50 profiles with different
APs mappings in each data source.

7 Conclusion and Future Work

In this work we have addressed the declarative specification of Z39.50 wrappers.
We have presented a wrapper generation toolkit based on DL concept languages
in order to map the Z39.50 world view of information to the underlying source
data structure and semantics. The proposed DL mapping language offers a num-
ber of advantages : (i) the required views over source data can be easily defined
while a wide range of Z39.50 translation cases can be expressed (unlike stan-
dard DBMS query languages such as SQL); (ii) it comes equipped with formally
verifiable properties allowing to check the consistency of the defined views and
therefore ensure the quality of the retrieved data; (iii) it enables reasoning about
the relationships between these views and thus rending explicit to Z39.50 profile
developers, end-users, etc., the conceptual structure of the Z39.50 vocabularies
for a specific source; and (iv) it can serve to translate Z39.50 queries, which
opens interesting opportunities for semantic query optimization and caching of
results, exploiting as much as possible the stateful nature of the protocol.
Currently, the developed toolkit supports only the DL Instance Checking ser-
vice for evaluating queries and sources built on top of SIS-Telos [2T]. We plan to
complete the implementation of the toolkit in order to provide full-fledged DL
reasoning services. There is on-going study of the available DL systemdd for pos-
sible integration in our toolkit. Furthermore, we intend to validate our approach

8 http://www.ida.liu.se/labs /iislab/people/patla/DL/systems.html

400 Y. Velegrakis, V. Christophides and P. Constantopoulos

with several Z39.50 profiles and extend the wrapping facilities to other data
source technologies (e.g., DBMS, IRS, etc.). Last but not least, we plan to apply
the ideas presented in this paper at a higher level of information integration, in
order to build intelligent mediators instead of wrappers [1].

Acknowledgments

We are grateful to the AQUARELLE and CIMI Consortiums for their techni-
cal support during this project. We also thank A. Analyti, D. Plexousakis and
M. Déerr for helpful comments on a preliminary version of this paper.

References

1. B. Amann, V. Christophides, I. Fundulaki, M. Scholl, and A. Vercoustre. Intelligent
Mediation of Cultural Information Sources. ERCIM NEWS, October 1998.

2. ANSI/NISO. Z39.50 (versions 2 and 3) Information Retrieval: Application Service
Definition and Protocol Specification, 1995.

3. Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock. Retrieving and Integrating
Data from Multiple Information Sources. International Journal of Cooperative
Information Systems, 2(2):127-158, 1993.

4. N. Ashish, C.A. Knoblock, and C. Shahabi. Intelligent Caching for Information
Mediators: A KR Based Approach. In Proc. of 5th Workshop KRDB’98, pages
3.1-3.7, Seattle, Washington, USA, 1998.

5. F. Baader, H. Biirckert, J. Heinsohn, B. Hollunder, J. Miiller, B. Nebel, W. Nutt,
and H. Profitlich. Terminological Knowledge Representation: A proposal for a Ter-
minological Logic. In Nebel B., Luck K. von, and Peltason C., editors, International
Workshop on Terminological Logics, Dagstuhl, Germany, 1991. DFKI.

6. S. Bergamaschi, S. Castano, and M. Vincini. Semantic Integration of Semistruc-
tured and Structured Data Sources”. SIGMOD Record Special Issue on Semantic
Interoperability in Global Information, 28(1), March 1999.

7. S. Bergamaschi, C. Sartori, and M. Vincini. DL Techniques for Intensional Query
Answering in OODBs. In Proc. of 2nd Workshop KRDB’95, Bielefeld, Germany,
September 1995.

8. A. Borgida. Description Logics for Querying Databases. In Proc. of the 1st Intern.
Workshop on Description Logics, pages 95-96, Bonn, Germany, May 1994.

9. A. Borgida. Description Logics in Data Management. IEEE Transactions on
Knowledge and Data Engineering, 7(5):671-682, October 1995.

10. A. Borgida and R. J. Brachman. Loading Data into Description Reasoners. In Proc.
of ACM SIGMOD Conf. on Management of Data, pages 217-226, June 1993.

11. V. Bouthors, J. Dupuis, and N. T. Huu. Z39.50 Gateway for Mistral and ARF
DTD Specification. Aquarelle project, deliverable 5.2, INRIA, France, September
1997.

12. R. Brachman, D. McGuinness, P.P. Schneider, L. A. Resnick, and A. Borgida. Liv-
ing with CLASSIC: When and How to use a KL-ONE-like language. In John F.
Sowa, editor, Principles of Semantic Networks — Ezxplorations in the Representa-
tion of Knowledge, pages 401-456. Morgan Kaufmann, 1991.

13. P. Bresciani. Uniformly Querying Knowledge Bases and Data Bases. In Proc. of
1st Workshop KRDB’9/, Saarbriicken, Germany, September 1994.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Declarative Specification of Z39.50 Wrappers Using Description Logics 401

P. Bresciani. Querying Databases from Description Logics. In Proc. of 2nd Work-
shop KRDB’95, Bielefeld, Germany, September 1995.

M. Buchheit, F. Donini, W. Nutt, and A. Schaerf. Terminological Systems Re-
visited: Terminology=Schema + Views. In Proc. of 1st Workshop KRDB’9/,
Saarbriicken, Germany, September 1994.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description
Logic Framework for Information Integration. In Proc. of the 6st Conf. on Prin-
ciples of Knowledge Representation and Reasoning (KR-98), pages 2—13, Trento,
Italy, June 1998.

D. Calvanese, M. Lenzerini, and D. Nardi. Description Logics for Conceptual
Data Modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems. Kluwer, 1998.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Docu-
ments to Novel Query Facilities. In Proc. of ACM SIGMOD Conf. on Management
of Data, pages 313—-324, Minneapolis, Minnesota, May 1994.

V. Christophides, S. Cluet, and G. Moerkotte. Evaluating Queries with Generalized
Path Expressions. In Proc. of ACM SIGMOD Conf. on Management of Data, pages
413-422, Montreal, Canada, June 1996.

CIMI. The CIMI Profile Release 1.0h: A Z39.50 Profile for Cultural Heritage Infor-
mation. Technical report, Consortium for the Computer Interchange of Museum
Information, Available at http://www.cimi.org/documents/HarmonizedProfile/-
HarmonProfilel.htm, November 1998.

P. Constantopoulos and M. Doerr. The SIS System: A brief presentation. ICS-
FORTH, http//www.csi.forth.gr/isst, May 1993.

F.D. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasonig in Description Log-
ics. In G. Brewka, editor, Principles of Knowledge Representation and Reasoning,
Studies in Logic, Language and Information, pages 193-238. CLSI Publications,
1996.

F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Queries, Rules and Definitions
as Epistemic Sentences in Concept Languages. Lecture Notes in Computer Science,
810:113, 1994.

A. Goni, A. Illarramendi, E. Mena, and J.M. Blanco. An Optimal Cache for a
Federated Database System. Journal of Intelligent Information Systems (JIIS),
9(2):125-155, 1997.

A. Goni, E. Mena, and A. lllarramendi. Information Modelling and Knowledge
Bases, chapter Querying Heterogeneous and Distributed Data Repositories using
Ontologies, pages 19-34. I0OS Press, 1998.

I. Horrocks and U. Sattler. A Description Logic with Transitive and Inverse Roles
and Role Hierarchies. In Proc. of the 5th Intern. Workshop on Description Logics,
Povo-Trento, Italy, June 1998.

U. Hustadt. Do we need the Closed World Assumption in Knowledge Represen-
tation? In Proc. of 1st Workshop KRDB’94, Saarbriicken, Germany, September
1994.

Index Data, Available at http://www.indexdata.dk/yaz. Yaz User’s Guide and
Reference Manual, version 1.4 edition, 1997.

K. Janney and J. Sledge. A User Model for CIMI Z39.50 Application Profile.
September 1995.

T. Kessel, M. Schlick, H.-M. Speiser, U. Brinkschulte, and H. Vogelsang. C3L+-++:
Implementing a Description Logics System on Top of an Object-Oriented Database
System. In Proc. of 8nd Workshop KRDB’96, Budapest, Hungary, August 1996.

402

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Y. Velegrakis, V. Christophides and P. Constantopoulos

LC. Z39.50 Profile for Access to Digital Collections. Technical report,
Library of Congress, Available at http://lcweb.loc.gov/23950/agency/profiles/-
collections.html, 1996.

LC. Application Profile for the Government Information Locator Service
(GILS). Technical report, Library of Congress, Available at http://www.gils.net /-
prof_v2.html, 1997.

AY. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Informa-
tion Sources Using Source descriptions. In Proc. of Inter. Conf. on Very Large
Databases, pages 251-262, Bombay, India, September 1996.

AY. Levy and M.C. Rousset. Using Description Logics to Model and Reason
About Views. In W. Wahlster, editor, Proc. of 12th European Conf. in Artificial
Intelligence (ECAI), Budapest Hungary, August 1996. John Wiley & Sons, Ltd.
A. Michard, V. Christophides, M. Scholl, M. Stapleton, D. Sutcliffe, and A-M.
Vercoustre. The Aquarelle Ressource Discovery System. Journal of Computer
Networks and ISDN Systems, 30(13):1185-1200, August 1998.

W.E. Moen. Accessing Distributed Cultural Heritage Information. Comm. of
ACM, 41(4):45-48, April 1998.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing
Knowledge About Information Systems. ACM Transactions on Information Sys-
tems, 8(4):325-362, 1990.

B. Nebel. Terminological Cycles: Semantics and Computational Properties. In
John F. Sowa, editor, Principles of Semantic Networks, pages 331-362. Morgan
Kaufmann, San Mateo, 1991.

R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin, T. R. Gruber,
and R. Neches. The DARPA Knowledge Sharing Effort: Progress Report. In
C. Rich, B. Nebel, and W. Swartout, editors, Proc. of the Third International
Conference on Principles of Knowledge Representation and Reasoning, Cambridge,
MA, 1992. Morgan Kaufmann.

K. Schild. The use of Description Logics as Database Query Languages. In Proc.
of 2nd Workshop KRDB’95, Bielefeld, Germany, September 1995.

A. Sheth. Changing Focus on Interoperability in Information Systems: From
System, Syntax, Structure to Semantics. In M.F. Goodchild, M.J. Egenhofer,
R. Fegeas, and C.A. Kottman, editors, Interoperating Geographic Information Sys-
tems. Kluwer Academic Publishers, February 1999.

O. Signore and M. Loffredo. 739.50-SQL Gateways: Technical Description.
Aquarelle project, deliverable 5.1, CNR-CNUCE, Italy, April 1997.

SSL. 739.50 version of Index+: Technical Description. Aquarelle project, deliver-
able 5.3, System Simulation Ltd, UK, October 1997.

SSL. Aquarelle Z39.50 Profile. Technical report, Aquarelle: The Information Net-
work on Cultural Heritage, Available at http://aqua.inria.fr/Aquarelle/Public/-
EN/profile-2.0.html, May 1998.

Y. Velegrakis. Declarative Specification of Z39.50 Wrappers using Description
Logics. Technical Report FORTH-ICS-TR-225, Computer Science Institute, Foun-
dation of Research and Technology (ICS-FORTH) - Hellas, July 1998. M.Sc. thesis,
Computer Science Department, University of Crete.

	Introduction
	An Example of a Cultural Information Source
	The CLIO System
	Z39.50 Wrapping for Digital Museums

	Declarative Specification of Z39.50 Wrappers Using DL
	The Core Description Logic Model
	DL Concept Languages for Z39.50 AP Mappings
	Formal Validation of Z39.50 Wrapping Quality

	Z39.50 Query Processing Using DL
	The Core Z39.50 Query Languages
	Z39.50 Query Answering

	Advanced Z39.50 Wrapping Services
	Conceptual Structuring of Flat Z39.50 Vocabularies
	Intelligent Query Processing

	Implementing a DL-Based Z39.50 Wrapper Toolkit
	Conclusion and Future Work

