
MMS: Using Queries As Data Values for Metadata Management

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

Yannis Velegrakis
University of Trento
velgias@dit.unitn.it

Abstract

We demonstrate MMS, a system for storing and manag-
ing a variety of metadata in a simple, elegant and uniform
way. The system is based on two observations. First, that the
relational model augmented with queries as data values is
a natural way to uniformly model data, arbitrary metadata
and their association. Second, that relational queries with
a join mechanism augmented to permit matching of query
result relations, instead of only atomic values, is an elegant
way to uniformly query across data and metadata.

1. The Problem of Metadata Management
Databases are becoming increasingly complex, both in

their internal structure (e.g., thousands of tables) and in
their interactions with other databases and applications (e.g.,
mediators and workflows). In successfully understanding,
maintaining, querying, integrating and evolving these data-
bases, metadata plays an important role. Metadata is data
about data, a secondary piece of information that is separate
in some way from the primary piece of information to which
it refers. Metadata examples include schema, integrity con-
straints, comments about the data, ontologies, quality para-
meters, annotations, provenance information, security poli-
cies, or statistical data characteristics. Each such metadata
has different structure and semantics. The majority of the
proposals that have been made over the years for a metadata
management system are mostly extensions of a data model
and are tailored to a specific kind of metadata. A simple ele-
gant uniform approach has been elusive.

We demonstrate MMS, a system that allows the storage
and querying of different forms of metadata. The demon-
stration intends to communicate to the database audience a
number of important messages [2]. The first is that the re-
lational model is adequate to manage both data and meta-
data, if it becomes free of specific metadata semantics. No
specialized data models are needed, and everything can be
modeled through relations. This is the main principle on
which MMS has been built. The philosophy is not different
from the one followed by the relational model, where at the

conceptual level there may be a distinction between entities
and relationships, but at the database level, for the purpose
of management, everything is represented through relations.
The second message the demonstration seeks to communi-
cate is that queries stored as data values [3, 1] in relation
attributes is an elegant way to associate data with metadata.
Our studies have shown that the main relational model as-
sociation mechanism, i.e., the join on an atomic value, is
limited. Thus, MMS uses queries as data values, referred to
as q-type values or simply q-values. Queries stored in tu-
ple attributes provide an intensional description of a set of
records, i.e., the data in the result of the evaluation of the
query. This virtual relation, can in turn be used to implement
“joins” with other tuples in the database. We refer to this
new “join” mechanism as aq-join. In MMS, q-join serves as
the main linking mechanism between data and its metadata.

2 Demonstration Overview
The top four tables of Figure 1 illustrate a fraction of

the database used in the demonstration. The demonstration
steps seek to emphasize the numerous advantages that can be
gained with the use of queries as data values. In particular:
Metadata Recording with Intensional AssociationsAs-
sume that a sales analyst runs some data mining tools on
the data of the database in order to discover customer trends.
In MMS, the analyst would like to annotate the data with
the results of the analysis performed by the tools and some
comments/observations she makes. For instance, she may
want to make the statement that New Jersey customers, i.e.,
those withloc=’NJ’, should enjoy a 10% discount in order
to boost the sales in New Jersey. The schema does not facil-
itate the recording of such a statement because this type of
information is not part of the main application and alteration
of the Customer table may be either not permitted, or may
have undesired consequences. The analyst can instead create
a separate tableComment (shown in Figure 1) that records
her statements and associates entries in that table to the data
through q-values, i.e., queries stored as values in a specific
column. As another example, assume that the entries in table
Item are collected from various data sources and it is impor-
tant to know the source from where each entry originates.



Customer
cid cname loc tn
1 John NJ x7214
2 Nick NY x7314
3 Mary NJ x6214
4 Kathy NY x7994

Order
oid cid odate
A 1 09/15
B 2 01/16

Config
oid iid
A 3
A 6
A 8
B 9

Item
iid iname price warranty
3 CPU 40 N
6 HD 20 Y
8 HD 60 Y
9 HD 20 Y

Comment
qref txt
select * apply 10% discount
from Customer
where loc=’NJ’
select * high profile customer
from Customer
where cid=’1’

Provenance
forD db ip
select iname, price NJDB 147.52.1.3
from Item
where iname=’HD’
select price GDB 211.1.11.73
from Item
where iname=’CPU’

QualityParams
forP lastUpd freq
select ip 07/06 hourly
from Provenance
where db=’NJDB’
select ip 3/29 monthly
from Provenance
where db=’GDB’

Figure 1. A database instance with q-values.

This is achieved by annotating the entries with their prove-
nance information (another form of metadata). This infor-
mation is recorded in tableProvenance as Figure 1 indicates,
and associated to the tuples inItem through the q-values of
attributeforD.
Assigning Metadata to Value BlocksAn important fea-
ture the demo will highlight is the ability to assign meta-
data not only to single values but also to a set of values,
even if these values do not constitute a whole tuple. Using a
key/foreign key mechanism to associate the provenance in-
formation with the entries in theItem table, one can asso-
ciate a wholeProvenance tuple with only a wholeItem tu-
ple. MMS is more expressive and this is achieved through
the attributes specified in theselect clause of the q-values.
For instance, the fact that theselect clause of the q-value of
the second tuple of tableProvenance has only theprice at-
tribute, it means that the ’GDB’ database contributed to the
Item table only theprice values for the ’CPU’ items.
Defining Metadata over MetadataIn some cases metadata
may have to be defined over existing metadata. We will
demonstrate how easily MMS allows the modeling of such
situations. The prices of the items change frequently. For
that reason, in order to assess the quality of the data, it is im-
portant to know how accurate is a price that appears inItem.
For that, a data administrator has decided to associate to each
data source some quality parameters, such as how frequently
it is updated and the time the most recent update has taken
place. The same mechanism MMS uses to model metadata
on data can also be used to model metadata on metadata, as
Figure 1 illustrates through the tableQualityParams.
Querying Data and Metadata MMS uses an extension of
SQL that allows querying of data and metadata. The ex-
tension provides a new powerful operator

.
= that is used to

specify conditions on the virtual relations described by the q-
values. For example, assume that a user would like to know
the conclusions that the analyst has reached regarding the
customers in New York and what statements she has made.
The following query will return that information:

select p.txt from Comment p

where p.qref[loc]
.
= [′NY ′]

Querying Metadata Independently of the Data Many
metadata management tools consider the metadata as an in-
tegral part of the data, which means that metadata cannot be
retrieved without retrieving also the data with which it is as-
sociated. This is not the case for MMS. We will show that
storing the metadata in independent tables, associated to the
data through the q-values, allows them to be queried and re-
trieved independently. For instance, if a user would like to
know the sources that have been used to collect the exist-
ing prices of the items, she can simply query the Provenance
table alone.
Recording Data Transformations An interesting applica-
tion of MMS we will demonstrate is its capability to record
data transformation processes. Data is usually retrieved from
databases, analyzed, processed and then stored back in the
same or a different database. During this process there are
two issues of great importance. The first is to be able to
understand the process through which the data has been gen-
erated, and the second is to be able to trace back and find the
original data on which the process was applied (provenance).
MMS provides a way to automatically record this informa-
tion and then allow users to visually observe the transfor-
mation flow and helps them understand the whole process.
This is achieved by recording the transformation information
and associating it to the source and transformed data through
queries that are stored as data values.

References
[1] D. Gawlick, D. Lenkov, A. Yalamanchi, and L. Chernobrod.Appli-

cations for Expression Data in Relational Database System.In ICDE,
pages 609–620, 2004.

[2] D. Srivastava and Y. Velegrakis. Using Queries to Associate Metadata
with Data. InICDE, 2007.

[3] M. Stonebraker, J. Anton, and E. N. Hanson. Extending a Database
System with Procedures.ACM TODS, 12(3):350–376, 1987.


