Chapter 9
Embracing Uncertainty in Entity Linking

Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, and Yannis Velegrakis

9.1 Introduction

The modern Web has grown from a publishing place of well-structured data and
HTML pages for companies and experienced users into a vivid publishing and data
exchange community in which everyone can participate, both as a data consumer
and as a data producer. Unavoidably, the data available on the Web became
highly heterogeneous, ranging from highly structured and semistructured to highly
unstructured user-generated content, reflecting different perspectives and structuring
principles. The full potential of such data can only be realized by combining
information from multiple sources. For instance, the knowledge that is typically
embedded in monolithic applications can be outsourced and, thus, used also in
other applications [10]. Numerous systems nowadays are already actively utilizing
existing content from various sources such as WordNet or Wikipedia. Some well-
known examples of such systems include DBpedia, Freebase, Spock, and DBLife.
A major challenge during combining and querying information from multiple
heterogeneous sources is entity linkage, i.e., the ability to detect whether two pieces
of information correspond to the same real-world object [19, 28]. The task is also
important in data cleaning applications [13] and can be found in the literature under
different names, such as merge-purge [23], entity identification [29], deduplication
[33], data matching [8,15], reference reconciliation [ 17], or resolution [5]. This topic
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has received considerable research attention with many interesting results relying
on different methodologies, such as string similarity metrics [8, 9], entity inner-
relationships [17,27], and clustering [7].

Unfortunately, existing approaches for entity linkage assume that data are
relatively static. Thus, they typically perform data processing off-line in order to
have the results readily available at query time. To achieve this, existing approaches
first collect matching evidence, such as similarities between the entity strings or
inner-relationships between entities, and based on them, generate information to
link the entities, then use predefined thresholds or human intervention to merge the
entities. Queries are processed over the resulted merged entities. In modern Web
applications, where data may at any time change not only their syntax or structure
but also their semantics [35], these techniques are so effective or efficient [19].
This calls for entity linkage techniques that consider and deal with the special
characteristics of such data.

This chapter introduces a novel approach for addressing the entity linkage prob-
lem for heterogeneous, uncertain, and volatile data. In the following paragraphs,
we present the motivation for this work (Sect. 9.1.1), followed by a discussion of
the related challenges (Sect. 9.1.2). We then provide an overview of the approach
introduced in this chapter (Sect. 9.4), summarize its contributions (Sect. 9.1.4), and
finally present the structure of the chapter (Sect. 9.1.5).

9.1.1 Motivation

Consider a system created for monitoring and integrating data from multiple
heterogeneous data sources on the Web. The basic data exchange unit of the system
is an entity, composed of an identifier and a number of attribute name—value pairs
describing the properties of the real-world object the entity represents.

The first part of Fig. 9.1 illustrates three entities existing in the system. The top
two entities are referring to the story of Harry Potter and the Chamber of Secrets.
The first entity has been extracted through text analysis of Wikipedia articles. Since
entity extraction from text is not always accurate, the extracted entity attributes
are accompanied with some probabilities reflecting the amount of confidence on
the existence of these attributes. In the figure, this confidence is illustrated by the
numbers next to the attribute values. The second entity has been extracted from a
set of online bookstore databases. A number of these databases contain outdated or
inconsistent data; thus, the attributes of the entity are also probabilistic. Finally, the
third entity has been extracted by a corpus of news archives. For reasons similar
to those of the first entity, its attributes have also some confidence associated with
them.

Since the system needs to handle volatile data, we expect continuous appearance
of new entities and these entities that need to be integrated with the data already
present in the system. The second part of Fig. 9.1 illustrates two additional entities,
which the system needs to integrate. Similar to the entities already existing in the
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title: Harry Potter and the Chamber of Secrets 0.6

starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer:  J.K. Rowling 0.6
genre: Fantasy 0.6
title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
writer:  J.K. Rowling 0.7
name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7

title: Harry Potter and the Chamber of Secrets 0.7

date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9
codename: The Big Blue 0.8
location: California 0.5

new entities

Fig. 9.1 A small fraction of new entities that should be integrated with the entities already existing
in the system. Entities are modeled as a set of attributes, i.e., name—value pairs, each with some
confidence value that indicates our belief that this attribute describes the specific entity

system, these two entities are also modeled as a set of attribute name—value pairs,
each with some confidence value.

A traditional entity linkage methodology [19] would simply use a predefined
threshold and accept the merging of these entities when their computed similarity is
above this threshold. For the entities of Fig. 9.1, this might mean merging the first
two entities. In this situation, a new entity would be created using the data from
both entities, which might also involve the removal of some name—value pairs when
these are considered as redundant, conflicting, or replicas.

There are two main issues with the traditional entity linkage methodologies. The
first is that the system will return no results if asked to return an entity described
using some of the attributes that were removed during the merging. The second
is that the arrival of a new entity might cause the system to get into a stage that
does not accurately reflect reality, since the system is now limited to two options:
either decide that the new entity describes the same real-world object as one of
those that already exist in the system or that the new entity is not among the already
existing entities. This unfortunately ignores the possible options that would arise
from reviewing any of the previous merging decisions. As an example, consider a
system that has previously performed a merging between entities e, and e;, and
that it now needs to process the new entity e.. Merging entity e, with e, might
provide a better solution than merging it with the previously merging of e, with e;.
An alternative methodology for considering all possible options would of course be
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to maintain the original entities and, at each addition, reexecute an entity linkage
technique over the original entities, ignoring the results from previous executions.
Unfortunately, this approach has a prohibitively high computational cost, which
means that it cannot be applied.

9.1.2 Challenges

To create an effective and efficient solution for the entity linkage problem, we need
to consider the characteristics as well as the resulting challenges that appear in the
scenarios we are focusing on (Sect. 9.1.1). This can be summarized as follows:

Challenge 1—Volatile Data. Collections created by combining data from various
Web applications or extracted data describing resources may constantly change
and evolve through interactions with users or external applications. Therefore, the
knowledge available to the entity linkage techniques is subject to data reduction,
addition, and modification. This implies the need for supporting an incremental
computation and adaptation of the linkage information.

Challenge 2—Heterogeneous Information. Effectively addressing the entity link-
age problem implies the ability to handle highly heterogeneous data. Dealing with
heterogeneity is a task that touches a number of aspects. For instance, the data model
for the entities should be able to also capture the possible data heterogeneity. In
addition, we need to consider that we are using an entity linkage technique that
handles heterogeneous information. The most common methodology to detect entity
linkages is based on observing similarities between the attribute values from the
entities. However, this assumes that entities describing the same real-world objects
would have the same, or at least similar, attribute values. Another methodology
relies on identifying and facilitating semantic information, such as relationships
between the entities. For example, coauthoring relationship in publications increases
the belief that two authors describe the same object. Our solution should therefore
allow the combination of results generated by various entity linkage techniques, as
a way to capture different linkage methodologies.

Challenge 3—Data Uncertainty. Apart from the uncertainty in the linkage informa-
tion, data uncertainty also appears for other reasons. One example is data uncertainty
that comes directly from the extraction process due to the very low quality that
typically accompanies the unstructured data of such applications [21]. Another
example is the uncertainty introduced when building structures for processing the
data, e.g., social network analysis [1]. These approaches typically affect the quality
of data, which is then reflected through probabilities. Unfortunately, incorporating
uncertainty in a system may break a number of assumptions that many entity linkage
techniques rely upon. Thus, performing entity linkage over uncertain data is a major
challenge.
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9.1.3 Summary of the Approach

The methodology we follow takes into consideration heterogeneity, uncertainty, and
the volatile nature of the data. It is based on maintaining the linkage information
among the entities. As an example, let us consider the entities in Fig. 9.1. It is
easy to see that the first two entities may represent the same real-world object, for
instance, the first entity may represent the actual movie, whereas the second entity
is a DVD with the respective movie. Given that we do not have enough evidence to
support a definite decision on whether these entities represent the same real-world
object or not, we do not perform a merging between them. We compute and store
a probabilistic linkage connecting the two entities. The addition of the new entities
requires only the computation of the linkages or (in some cases) the recomputation
of the probability of existing linkages.

Figure 9.2 illustrates the computed linkages through the interconnecting dotted
lines and alongside their probabilities. As depicted in the figure, these entities have
three probabilistic linkages, two among the movie entities that are labeled e;-e3, and
one among the company entities that are labeled as e4 and es5. Once we reach a final
decision that two or more entities are linked, we can replace them by an equivalent
entity consisting of the union of their attributes.

title: Harry Potter and the Chamber of Secrets 0.6

starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer:  J.K. Rowling 0.6
genre: Fantasy 0.6

title: Harry Potter and the Chamber of Secrets 0.7

date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

titte:  Harry Potter and the Chamber of Secrets 0.8

'-..".es genre: Fantasy 0.8
writer: J.K. Rowling 0.7
® o, codename: The Big Blue 0.8
location: California 0.5
{08
name: International Business Machines 0.9
"o base: New York 0.7
€5 ldate: 2002 0.7

Fig. 9.2 Entities and their probabilistic linkage information, which is shown with the dotted lines
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Consider now a user looking for the IBM consulting corporation. As is typically
the case in dataspaces [22], queries are expressed as a series of attribute name—value
pairs. Thus, the user sends the following query to the system:

(name = “International Business Machines”, base = “New York™)

Clearly among the five entities e, e,, e3, e4, and es, only the fourth satisfies these
two conditions. Of course, since the attributes of the specific entity exist with some
uncertainty, specified by the respective probabilities, the existence of the entity in
the query answers should also be probabilistic. A significant amount of research has
been carried out in the area of the probabilistic databases [12] on specifying the
semantics and on the development of efficient query answering techniques for this
kind of scenarios.

Assume now that a user is interested in the works of J.K. Rowling in the year
2002. He sends to the system the following query:

(writer = “J.K. Rowling”, year = “2002”)

None of the three entities in Fig. 9.2 contain both attribute name—value pairs as
specified in the query; thus, any probabilistic database approach will return an
empty set as an answer. However, the linkage information between entity e; and
e indicates that they may represent the same real-world object. If they do, then they
can be both merged into one entity, say e, that contains as attributes the union of
the attributes e; and e,. That entity will satisfy both the conditions of the last query
and should be part of the answer set, even though it is not one of the three entities
that are actually stored in the repository.
In a similar situation, assume that the user sends the query:

(writer = “J.K. Rowling”, genre = “Fantasy”)

Answer to the query should take into consideration all the different cases that may
exist based on the entity linkages. In particular, a complete answer should contain
three entities, namely, entity ej, entity e3, and the entity e;3 which is the merging of
entities e; and e3. Each of these entities should of course be in the answer set of the
query with some degree of belief, based on the belief of the linkages and the belief
of the attributes writer and genre.

The answer set for this query could also contain entities e, and ej»3, which are
created by the merging of entity e, with e, and entity e, with e; and e3, respectively.
Included in the merging, the attributes of e, will create entities that have additional
attributes, such as date = 2002. We consider such additional attributes as redundant,
since the user did not request them through the query. Our basic principle is that
we do not want to produce results that are not required, and therefore, no merging
should take place unless it is justified by the query given by the user, the linkages,
and the attributes composing the entities.

Our approach creates the entity mergings by using available entity linkages.
Since the linkages are probabilistic, for an effective query mechanism, we need
to take into consideration all the different combinations that may occur. Each such
combination will partially contribute to the answer set. However, materialization of
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all combination will lead to exponential increase of the data, which is inefficient to
generate and store. Instead, query processing at runtime takes into consideration the
related probabilistic linkages; computes the different combinations, along with their
respective probability of existence; and then generates the answer set by merging
the data produced from each combination.

9.1.4 Contributions

The main focus of this chapter is to efficiently and effectively address the entity
linkage problem as this appears in heterogeneous, uncertain, and volatile data. This
is achieved by allowing data integration systems to maintain probabilistic linkage
information and perform entity-aware query processing over the data and thus
retrieve answers to queries that reflect the corresponding real-world objects. This
methodology avoids pitfalls that may result from the one-time a priori merging
decisions, as performed by traditional entity linkage techniques. Furthermore, it can
support highly volatile data more efficiently. The reason is that since no merging
decisions have taken place, the only updates required are on the linkages related to
new data incorporated in the system, or modified data.

In an effort to address the entity linkage problem for volatile data, we introduce
a model for representing entities and linkages that aims at bringing together two
worlds: the world of entity linkage and the world of probabilistic databases. The
novelty of this data model is that it uses a generic entity-based representation
model for highly heterogeneous data that support the simultaneous representation
of possible linkages between entities alongside the original data, as generated by a
number of the existing entity linkage techniques. This means that no data merging
is performed in advance, but the outcome of the entity linkage algorithms, i.e., the
pairs of entities possibly representing the same real-world object with the belief
of that being true, is stored in the data. The outcome is a database that contains
uncertainty not only on the attributes of the entities but also on their linkages.

Relying on the introduced model that contains a set of probabilistic linkages,
we introduce a methodology to efficiently compute the answers for entity queries .
Query answers reflect the entity linkage and entity representation information, with
special emphasis given to the computation of the probabilities of the possible worlds
based on the data and the matching uncertainty.

Generating entities by combining probabilistic linkages has several benefits.
First, it produces additional valid query answering results compared to those of
entity linkage and probabilistic databases, which cannot be simulated with previous
techniques. An interesting feature is that reasoning about the entity linkages is done
on the fly, meaning that some query results may not be explicitly represented in the
database but might be a product of the reasoning which is based on the data as well
as on the query conditions, i.e., by considering the union of all the attributes of the
structures to be merged with corresponding probabilities [36].
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9.1.5 Organization

The remaining of this chapter is structured as follows. Section 9.2 presents and
discusses existing approaches that are related to the techniques presented in this
chapter. Section 9.3 introduces and explains the data model, which includes the
representation of entities and linkages, as well as the mechanism for dealing with
data uncertainty. Section 9.4 explains the mechanism for dealing with probabilistic
linkage information through on-the-fly entity-aware query processing. Section 9.5
reports on our experimental evaluation performed on two real-world datasets.
Finally, Sect. 9.6 provides conclusions and provides an overview of current and
future work.

9.2 Related Work

Most existing techniques for entity linkage focus on the off-line detection and
linkage of data referring to the same real-world objects [14,19,20]. These techniques
deploy a variety of different methodologies and directions. These includes string
similarity metrics [8, 9] for computing the matching being the given textual
representations of entities, the use of the available inner-relationships between
the entities [17,27], clustering [7], and blocking techniques [30, 31] for reducing
the required execution time. However, as already explained in Sect. 9.1, these
techniques have major limitations in addressing the entity linkage problem as this
appears in current data [19], e.g., data evolution, uncertainty, and incompleteness.

Few existing data integration proposals focus on dealing with uncertain linkage
information during query processing. More specifically, Dong et al. [18] investigate
the use of the probabilistic mappings between the attributes of the contributing
sources with a mediated schema. Applying this method on the data from Sect. 9.1.1
would have considered the possible mappings between the attribute names as given
by contributing sources with a mediated schema S. This means that “title” attribute
of ey, e, and e3 is mapped to a “Title” attribute from S with a probability to show
the uncertainty of each mapping. Querying the mediated schema S will be based on
these mappings. For example, query “title = Harry Potter. ..” returns e, e,, and es.
However, it does not really reflect the expected answer, since we know that some of
the entities are the same, and thus they should be merged accordantly. In fact, the
probabilistic schema mappings described in this approach could actually become an
input to our approach.

The approach presented in [3] is more similar to ours, since their focus is not on
the schema information but on the actual data. The authors assume that the duplicate
tuples for each entity are given. In our motivating example (Sect. 9.1.1), this means
that all tuples which describe the same entity should have the same identifier, e.g.,:
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Identifier ~ Entity = Probability

5 e 14
5 12 D2
5 ] pP3

The tuples that represent different entities are considered as independent and the
tuples representing the same entity (having the same identifier) as conditionally
dependent. The latter means that only one tuple for each identifier can be part of
the results. Our proposal does not require this. We explain how entity linkages can
contain correlations and provide an appropriate solution.

Other related approaches are dataspaces [22] and Trio [2]. The main focus
of these approaches is to create database systems that support uncertainty along
with inconsistency and lineage. At some extent, these systems also deal with
duplicate tuples and uncertain data. Our approach addresses more challenges of
heterogeneous data, mainly by considering linkage/matching on the data (not only
on schema information), and also correlations between entities.

Another important aspect of our approach is the efficient management of
uncertainty in data; a topic that has received a lot of attention recently. Dalvis
and Suciu [11] used the notion of possible worlds to introduce query semantics for
independent probabilistic data and presented how to efficiently evaluate queries. The
approach by Sen et al. [34] moved towards defining and using different correlations,
e.g., that existence of one tuple implies or disallows the existence of another tuple.

9.3 Data Model

To effectively model highly heterogeneous information, we need a simple and
flexible model that will be able to represent relational, XML, RDF, and object-
oriented data without significant loss of information. We have chosen to go with
a graph-based model that is typically used in dataspaces [22]. The main component
of the model is an entity which consists of a number of attributes describing its
characteristics and a set of associations between the entities. In particular, we
assume the existence of an infinite set of entity identifiers O, names N, and atomic
values V. An entity is a design artifact used to model a real-world object. It consists
of a unique entity identifier and a set of attributes. An attribute is a pair (n,v) of a
name and a value and describes some characteristic of the entity. The set A = N xV
represents the infinite set of all the possible attributes.

Definition 9.1. An entity e is a tuple (id, A) called the entity identifier of the entity
and A C A is a finite set called the set of entity attributes. [ ]

Since each entity is distinguished by its unique identifier, for the rest of the
document, the term entity and entity identifier will be used interchangeably.
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Entity identifiers can be considered a special type of atomic values, allowing
identifiers to serve as the value of an attribute. Through this mechanism, the
data model is able to support not only entities and their characteristics but also
relationships among them.

A database is a set of entities. Among these entities, there may be groups
modeling the same real-world object but using a different or overlapping set of
attributes. Such entities are said to be linked.

Definition 9.2. A database is a tuple (£,L£), where £ is a finite set of entities and £
is a linkage assignment on £. A linkage assignment over a set E is a binary relation
L C E x E that is commutative, symmetric, and reflexive. Two entities e}, e; € &
of a database (£, £) are said to be linked and is denoted as e;=e; if (e1,e;) € L.
A maximal group of entities that are pairwise linked forms a factor. [ |

It is important to note that a linkage assignment can be equivalently expressed
either through an explicit statement of the binary relationships or through a set of
groups of entities, with each such group representing a factor. For instance, given
six entities ey, e, ..., e, the set {{e}, ez, e3}, {es, es5}, {ec}} describes a linkage
assignment with three factors. The first factor consists of entities e, e, and es; the
second contains e4 and es; and the third contains only e¢. The set of linkages are the
set of all the pairwise links in each factor.

Since linked entities in a database represent the same real-world object, they
can be replaced by a new entity that combines the information described by them.
(Note that linked entities may have different, or even disjoint, sets of attributes)
This process is referred to as entity merge and leads to more compact database
representations without losing any information. A database in which no merge can
be performed is said to be minimal.

Definition 9.3. The merge of a set of entities ¢; = (id;, A;) for 1 <i < n, denoted

as merge(ey, ez, ..., ey), is a new entity (id, A) such that id is a new identifier and
A = U’_,| A;. The minimal form of a database (£, £) is a database (£’, £L’), where
L = @ and & = {e|le = merge(e1,es,....e;) A{el,ea,...,e,} is a factor in
(€.L)}. |

To capture the uncertainty that may exist on the data, every attribute of an entity
is associated with a value between 0 and 1, which indicates a likelihood that the
information described by the attribute is among the characteristics of the real-world
object that the entity models. Uncertainty exists also on the linkage information
among the entities. Thus, we extend the definition of the database to include this
uncertainty.

Definition 9.4. A probabilistic linkage database is a tuple (£, L, p®, p'), where
€ is a set of entities and £ is a linkage assignment on £. p“ is a function that
assigns a probability weight to the attributes of the entities, i.e., p*|B + [0, 1] with
B = {ala € AA(id, A) € £}. p' is also a function that assigns a probability weight
to the entity linkages, i.e., p'|£ + [0, 1]. [ |
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Note, that our notion of a probabilistic database goes beyond the traditional
probabilistic database [12] that simply associates probabilities with attributes, by
assigning probabilities also to linkage relationships that exist among the entities.

Example 9.1. Figure 9.2 illustrates a small fraction of a probabilistic linkage
database. It contains a total of five entities; therefore, £ = {ey, e2, 3, e4, e5}. The
entity linkage techniques we executed on these five entities generated three entity
linkages, and thus, £ = {l, ¢, le; .3+ ey e }- From the figure, we can also see the
attributes composing the entities. For example, entity e; has five attributes, with
the first attribute having a value “Harry Potter and the Chamber of Secrets” for the
name “title”. The probability for the specific attribute is 0.6, which corresponds to
the belief we have that the specific attribute describes e;. These probabilities are
provided by function p¢. Similarly, function p’ provides the probabilities for the
entity linkages, shown in the figure with the line between the entities. [ |

Having the right probabilities on the attributes of a probabilistic entity is a
critical issue. One of the challenges is to understand the semantics of these
probability numbers and to adequately use them to perform the merge. This task is
challenging since very often, different algorithms may have been used to compute
the probabilities for the attributes of different entities, or the employed algorithms
may not be known. In certain cases, these numbers may not even be probabilities in
the strict mathematical sense but rather numbers that are meant to provide a relative
ranking of the likelihood of the respective attributes in the entity. This can make
the computation of the query results even harder. The same issues arise on the
linkage information. There is a large amount of literature on the topic of computing
entity linkage [19], with most methods analyzing the structural similarity of the
data and returning some numbers measuring the likelihood that two data structures
represent the same real-world entity. All these issues are outside of the scope of the
current paper. We assume that this information is explicitly provided or computed
in advance using some data analysis tools [6].

A probabilistic linkage database models multiple different real-world situations,
i.e., possible databases, depending on what entity linkages actually exist among the
entities and on what attributes each entity actually has. To differentiate between the
situations that arise from the different linkages, the notion of possible I-worlds is
introduced (short for possible linkage worlds).

Definition 9.5. Given a probabilistic linkage database (£, £, p?, p'), a consistent
linkage specification is a linkage assignment £°P such that Vx,y € L%: x,y €e L A
p'(x,y)! = 0. The probabilistic database with linkages (£, L, p, pip), where
pﬁp(x,y) = 1, Y(x,y) € L, is called a possible [-world. The set of all the

possible I-worlds of probabilistic database with linkages (£, £, p®, p') is denoted
as plw((€. L, p. p')). [ ]

Since a linkage specification uniquely defines a possible 1-world (Definition 9.5),
the terms “consistent linkage specification” and “possible 1-world” will be used
equivalently. Furthermore, we will consider only consistent linkage specifications;
thus, we will not mention the word “consistent” any more.
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Fig. 9.3 An illustration of ° tile:  Harry Potter and the Chamber of Secrets 0.6
the linkage specification €12 |starring: Daniel Radcliffe 0.7
LP = {le) 01 ley o5} for the starring: Emma Watson 0.4
probabilistic linkage database writer:  J.K. Rowling 0.6
shown in Fig. 9.2 genre: Fantasy 0.6
title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

° titte:  Harry Potter and the Chamber of Secrets 0.8

€3 | genre: Fantasy 0.8
writer: J.K. Rowling 0.7

° codename: The Big Blue 0.8
€45 |location:  California 0.5
name: International Business Machines 0.9

base: New York 0.7

date: 2002 0.7

Table 9.1 A summary of the notation introduced in Sect. 9.3 and used throughout this chapter

Notation Description

a; = (n,v) Attribute: a pair of name n and value v

e; = (id, A) Entity: a tuple with an identifier id and a set of attributes A

leie; Linkage: denotes a possible match between entity e; with entity e;
(&, L, p?, p') Probabilistic linkage database

plw({&, L, p*, p')) Possible I-worlds of a probabilistic linkage database

LP Linkage assignment

Jf Factor: a set pairwise linked entities

Example 9.2. Consider again the probabilistic linkage database of Fig. 9.2. The
entity linkage set is £ = {l¢, ¢,, e, .55 les.e55- One of the possible linkage spec-
ifications £ = {l,, ¢,,le, s}, Which means accepting the two out of the three
linkages of this original entity linkage set L. As explained, each linkage we accept
implies a merge between the entities of the linkages. Therefore, the specific linkage
specification means we need to merge e; with e, and e4 with es. The result is a
probabilistic database with linkages, as shown in Fig. 9.3. [ |

In the remaining chapter, we will use the notation /., ., as a shorthand for
(e1,e2) € L. A summary of the introduced notation, which is used throughout this
chapter, is listed in Table 9.1.

Note that a possible 1-world still has probabilities assigned to the attributes of its
elements. The possible worlds of each possible 1-world describe a number of non-
probabilistic databases, depending on whether each probabilistic attribute is present
or not. These nonprobabilistic databases are referred to as regular database, or a
solution. A solution actually corresponds to what is referred to as a possible world
in the probabilistic database literature [12].
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For queries, a simple, but flexible, query language is adopted. A query is a series
of attributes, i.e., a list of name—value pairs. Intuitively, the semantics of the query is
to discover entities that contain the attributes described in its attribute list. An entity
e is included in the answer of a query ¢ if it contains all the requested attributes.
Evaluating the query on a probabilistic linkage database can be performed on the
basis of the traditional query answering approaches.

Using entity linkage, it is possible to go beyond this expressiveness and be able
to retrieve new entities that may not be explicitly represented in the database. These
entities result from the merge of two or more entities as specified by their linkage
information. In particular, the results of evaluating a query g over a probabilistic
linkage database with a linkage L is equal to the results of the evaluation of the query
q over the minimal form of the database, as specified by the linkage assignment L.

If the database is probabilistic, and a specific linkage assignment £ has been
decided, then its minimal form can be computed but will also be probabilistic,
since the entity attributes will have probabilities. Evaluation of a query over such
a database can be performed based on various techniques proposed for probabilistic
databases [12]. However, if the linkage assignment is also probabilistic, as in the
general case of a probabilistic database, then a query is evaluated over the database
by computing all its possible worlds, i.e., all the possible linkage assignments, and
then evaluating the query on the minimal form of each such worlds. The final result
of the query will by the union of the results of the evaluations on the individual
worlds. However, since the linkage information is probabilistic in the first place, so
is the linkage assignment, and as a consequence, the results of each evaluation on
the individual worlds should also be coming with some probability.

A fundamental property that differentiates our work from other work related
to querying probabilistic data is that the query results are computed from entities
that are compiled on the fly at query execution time from the available linkage
information. The entities used in query evaluation thus consider entities that are
not materialized in the repository in this form. In particular, traditional approaches
evaluate the queries on the extensional data that can be found in the database. In
our work, we view the probabilistic entity linkage as an intensional description of
a number of possible entities that can result from the merge of those linked. We
compute these entities through the possible worlds on the fly and offer additional
query results.

Example 9.3. Consider again the probabilistic linkage dataset illustrated in Fig. 9.2
and the query:

(starring:“Emma Watson”, starring: “Radcliffe, Daniel” )

In can be observed that there is no entity with both the attributes requested by the
query. Traditional query answering techniques would have failed to return results
or would have returned with a low confidence, those having at least one of the two
requested attributes. However, in the possible world described by the entity linkage
{{e1, 2, €3, €4, €5}, {e€g, €9}}, the merge of the entities of the first of the two factors
represents an entity with both the attributes requested in the query. Thus, such an
entity can be returned with a much higher confidence. [ |
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The following sections deal with the challenge of computing the right probabil-
ities of the possible 1-worlds and possible worlds, and performing query answering
on the fly without having to materialize all them.

9.4 Efficient Query Evaluation

In this section, we present how query evaluation can be performed efficiently over
a probabilistic linkage database. A more detailed description of the algorithm and
experimental evaluation is available in [24] and [25].

Our query evaluation approach is based on an idea similar to the one incorporated
in probabilistic databases for dealing with datasets of large sizes. In particular, the
probability values on the linkages are interpreted as the probability distribution over
the set of all the possible I-worlds plw((€, £, p“, p')). Given a linkage specification,
i.e., a possible 1-world, the probability values of the attributes are interpreted as
the probability distribution over all the possible solutions (ref. Sect. 9.3) within
one possible world leading to a two-level approach. The answer of a query on a
probabilistic linkage database, thus, is the union of the answers over all the possible
worlds of all the 1-worlds fulfilling the query conditions. Each element in the answer
set, however, is accompanied by an aggregated probability value which reflects the
probability of existence of the specific possible world, which contains the answer
element, as well as the probability of the possible I-world, which contains the
respective solution.

This description of semantics for query answering is indirectly suggesting a
query evaluation strategy: compute all possible worlds of all possible I-worlds,
compute their probability of existence, evaluate the query in each one of them, and
return the results along with computed probability. Unfortunately, following this
approach is prohibitively expensive.

Here, we propose an alternative evaluation strategy that avoids the high com-
putational cost without any loss of accuracy. The basic idea is to restrict the
computation to only those possible I-worlds that are meaningful for the query at
hand. Since there is a one-to-one correspondence between possible 1-worlds and
linkage specifications, and between linkage specifications and entity merges, we
start from the entity merges that are required in order to generate an answer to the
given query. From the merges, we can find the linkage specifications, and from
these assignments, the possible 1-worlds. The probability of each possible 1-world
is computed based on the probabilities of the linkages included or not included
when generating the specific 1-world. Finally, the possible worlds of each 1-world are
generated along with their own probability, which is combined with the probability
of the respective world and then included in the answer set of the query. An overview
of the proposed query evaluation is given by Algorithm 18, while the following
subsections describe these steps of the algorithm in more detail.
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Algorithm 18: Query evaluation
Input: Q: a query describing an entity
Output: R: a set of entities satisfying query conditions
LS <« findRequiredLinkageSpefications(Q);
PLW <« @;
R <« 0;
foreach /s € LS do
W <« findPossibleLWorlds(/s);
foreach w € W do
w.prob < calculateWorldLProbability(/s);
| PLW < PLW U {w};
foreach piw € PLW do
E < evaluateQuery(plw, Q);
foreach ¢ € E do
e.prob <— combineProb(e.prob, plw.prob);
L R < R U {e};

9.4.1 Indexing Structure

A commonly used approach in answering queries over probabilistic data is to
partition the data into a series of disjoint/independent groups [4, 12,32, 34]. These
groups can be found in the literature under the name factors [34] or components [4].
The set of the possible combinations between the data of these groups produces all
the possible worlds.

This idea is not directly applicable to our case. The reason is that the existing
approaches operate under the assumption that the data within one factor or compo-
nent are independent. This assumption does not hold in our case. The transitive
property of the linkages may generate additional correlation, i.e., dependencies,
that are equally important for the correct identification of the possible worlds. For
instance, entity linkages /,, ., and /., ., without linkage /,, ., cannot be considered,
since the first two linkages imply the information encoded in the third linkage.

We follow an idea similar to the management of uncertain data with correlations
[34]. As a first step, we divide the set of entities into sets of connected components,
i.e., factors (Definition 9.2). For example, given £ = {l¢, ¢, lej.e3- les.ess Leg.eo }» tWO
independent factors can be identified. The first factor contains entities ej, e;, and e3
with linkages L1 = {l¢, ¢,, le).e35 Les.e }» While the second factor contains simply eg
and e9 with one linkage Ly = {/¢4.0}-

To compute all possible 1-worlds of a probabilistic linkage database (£, L, p?, p’ ),
we need to consider all the possible valid linkage specifications of £. This number
can easily get large enough to make the computation intractable. Based on the
fact that no linkage exists between entities in different factors, we can improve
the situation by considering each factor independently. We will use notation £ to

denote all the possible valid linkage specifications between entities of the i th faétor
and Esf(k) one of the possible assignments.
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Each possible 1-world is using a specific specification within each factor. Thus,
the set of possible I-worlds can be derived by combining all the alternative valid
linkage specifications within each factor as follows:

plw((&, L, p°. p>)_£pr£f: ~x£;§

Example 9.4. Consider a probabilistic linkage database with entity linkages £ =
{lei.ers Lere3» Ley e5 }- For the specific set of entity linkages, we have two factors. Factor
fl with entities {e1, e;, e3} and factor fz with entities {eq4, es5}. The corresponding
linkage specifications are ﬁfp = {leerslej.e3 and LSp = {le,es}, and thus, the

possible I-worlds can be retrieved as follows:

IO = llooloeh LD =l
E;éo(z) = {lo0,} X E}f(Z) ={}
‘C?;)@) ={lees}

c;g(4) =1{

The cartesian product of these linkage assignments results into the number of
possible 1-worlds for the whole database. The next table illustrates these 1-worlds
(through the specifications) along with the entity merges for each of these possible
l-world.

Possible worlds Entity merges
D, = {161.627161,637164.65} €

e =e3, €3 =¢g

Dy =A{le1ey.ley 03} ep=e =e3, €3, €
D3 =A{leey.leye5} ep=e, e3, e€3=e
Dy ={le1er} ey =e, €3, e, €5
Ds = {le) o3+ ley.es} e, ej=e3, e4=e;s
Dg = {le) e} e, ej=e3, ey, €5
D7 = {le,es} ey, e, e, e =ées
Dy ={} el ey, e3, ey es

To avoid recomputing the factors every time, we maintain an index structure
which is dynamically maintained. The index structure is based on the idea of equiv-
alence classes. In reality, each factor is actually an equivalence class. When data are
modified and new linkages are introduced or old ones are eliminated, changes should
occur in the equivalence class memberships, thus on the factors. Algorithm 19
illustrates how the factor index is maintained under new linkage insertions.

Once the various 1-worlds have been constructed, the second important step is to
compute the probability of each possible I-world. Since the factors are independent
of each other, the probability of an 1-world can be computed as the product of the
probabilities of the involved factors (Sect. 9.4.3). It is thus given by:
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Algorithm 19: Updating factor indexing

Input:  (a) Iy := (eq, e, p): a new linkage
b)) F=F,F,..., F,: the factors
Output: Updated factors F
F, < getFactorOf(e, );
Fg < getFactorOfi(eg);
if F, ¢ F then
| F < FUF,;
if Fg ¢ F then
| F< FU Fg;
if F, == Fg then
// already in the same factor ;
‘ return F;
else if F, /= Fg then
F, < F, U Fg;
L F<«< F\F,\FgUF,;

Pr(l— world) = ]‘[Pr(c}?(.)) 9.1)

i=1

Example 9.5. Assume that the possible worlds that satisfy condition e; = e, and

es = es needs to be retrieved. Based on Example 9.4, it can be easily seen that the

left part of the condition is satisfied by factors E;f(l) and E;f(?a), while the right part
1 1

by factor E}:(l). Therefore, only the possible 1-worlds given by the product of these
factors needs to be considered. These are:

E}p(l) ={leiersleres} X ‘C}p(l) = Ueses}
E;%)(S) - {131,23}

This results in two possible 1-worlds. The first I-world is given by

plw, = ﬁ}?(l) X L?(l) with probability Pr(ﬁ}?(l)) . Pr(ﬁ?(l)) 9.2)

and the second 1-world is given by

plw, = Esfp(3) X ﬁjf (1) with probability Pr(ﬁ}? 3)) - Pr(ﬁjf (1))

9.4.2 Retrieving Possible I-Worlds

In order to avoid the creation of all possible l-worlds when a query is issued,
we exploit the list of factors we are maintaining, as mentioned in the previous
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section, and the attributes in the query. We do so in order to restrict the creation
of only those possible 1-worlds that are necessary, i.e., those that will lead to the
generation of some query results. We achieve this by first detecting the entity merges
that are required in order to satisfy the conditions of the query. In particular, for
every attribute specification a; in the query, a list E,, is constructed with all the
entities having attribute a;. Clearly an entity satisfies all the query conditions, that
is, contains all the attributes set by the query, if it appears in each one of the lists
E, , fori = l..n. It is not always the case that such an entity exists. However, by
merging two or more entities, it is possible to create a new one (the result of the
merge) whose attributes contain all the attributes in the query. Let S be a set of such
entities. For the set S to serve the required purpose, two main properties need to be
satisfied. First, all its members have to belong to the same factor (it is not possible
to talk about merge of entities that belong to different factors), and second, there
must be at least one entity e € S from every list E,,, with i = 1...n. Of course,
one can always create “super entities” by merging all the entities in every factor.
However, this may generate merges that are not necessary. To avoid this form or
redundancy, we require that each set E,, contributes at most one entity. This means
that the number of entities to merge can never be more than the number of attributes
in the query.

To compute all the possible merge combinations, we generate the cartesian
product of the sets E,, with the extra requirement that they should belong to the
same factor. Algorithm 20 provides a brief description of the described steps.

Example 9.6. For example, assume that a query ¢ contains attributes a;, a,, and
asz, and each one is satisfied by the entity sets E, :{fl —ea,fl —eb,fz—ec},
Eqy :.{fl —ey. §,—ea}. and E,, = i, _eg’.fl —en. £ —ei}, respectively. For each
entity in the sets, we also indicate the factor in which the entity belongs to. We first
compute all the possible combinations:

E, E,, E,,

ﬁ ~Ca X(Eay- f=Euy- ); Jcl —€b X(Eay- f=Faz- £) ﬁ —C
fi—en e fi—en
e b-ei

which lead to the following merges: merge(e,,ep,eq), merge(eq,ep,ep),
merge(ep, eg), merge(ep, ey), and merge(e., eq, ;). Note that e, belongs to both
sets E,, and E,,, which means that the entity ¢, has both attributes a; and a»; thus,
being merged with e, or e, is enough to create an entity that satisfies the query
conditions. [ ]

Consider now a merge of entities ¢, and eg from a factor f . From all possible
worlds that can be generated from the specific factor, we are only interested in
those that contain the specific entity merge. The remaining can be ignored. All
entities constructed from this merge will contain some common attributes, which
correspond to the attributes directly coming from the entities e, and eg. The
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Algorithm 20: Generate entity merges

Input: Q := (a;.a....,a;): an entity query
(€.L,p% p')
: a probabilistic linkage databaseQutput: M: a set of entity merges
foreach a; in Q do
L Ei<{ele={(id, A)ne€ENna; € A};
N <« {(ey,...ep)|Vi=1l.n:e; € E;AVi =2.n: factor(e;—) = factor(e;)};
M < {eliminateDuplicates(m)|m € N};

remaining attributes in the possible 1-worlds will come from entities participating in
other linkages which exist in the specific possible 1-world. To further optimize our
framework, we exploit this behavior and instead of returning all the entities for each
factor, we return only one partial entity. The partial entity contains the minimum
set of attributes required by the specific merge since this is commonly found in all
entities generated by this factor.

9.4.3 Computing Probabilities of Possible I-Worlds

The next step in the query answering process is to decide the probability of a merge,
i.e., a partial match as mentioned in the previous section. Recall that a partial
match may be true in many possible worlds. There are two alternatives that one
can follow. The first is to assign as the probability of the partial match the sum of
the probabilities of these worlds. The second is to compute and consider only the
maximum of these probabilities. The latter requires significantly less computation
time, since it only needs to identify the world with the highest probability. For
systems that simply use the match probability as a ranking mechanism for the
entities before displaying them to the user, this second option is typically sufficient.

The algorithm for computing the match probability is based on the algorithm
for finding shortest paths on graphs. In particular, provided the entity linkages L;
in a factor, we generate a weighted undirected graph G as follows: every entity
participating in the linkages of L; becomes a node of the graph. Each linkage /., ¢,
becomes an edge that connects the nodes representing entities e, and eg. The weight
of such an edge is given by the probability of the respective linkage.

An entity merging merge(ey, ez, . . . , e,) corresponds to a spanning tree that con-
nects all entities ey, e, . . ., e,. Computing the merge that maximizes the probability
is similar to computing the maximum connected component of the graph that has the
highest total probability (i.e., multiplication of the probabilities of its edges). Since
the nodes of the graph correspond to the entities of a factor, they are all connected;
thus, the maximum connected component will include all the nodes of the graph.
To compute it, we rank the edges in decreasing order of their linkage probability.
Initially, all the entities (i.e., nodes) are marked as not visited. The highest ranked
edge is first selected and the two nodes it connects are marked as visited. Then a
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list of edges is considered the subset of the edges that have one endpoint marked
visited and one nonvisited. The one with the highest probability is selected and its
nonvisited endpoint is marked as visited. The same step is repeatedly executed until
all the nodes in the graph have been marked as visited. The probability of the merge
is the multiplication of the probabilities of the edges that have been used in this
process, and this probability is actually the maximum.

9.4.4 Retrieving and Computing Probabilities
of Possible Worlds

The previous sections have dealt with the problem of processing a query by
efficiently deriving the possible I-worlds plw((&, L., p®, p')) along with the cor-
responding entity merges. However, this is not all. Recall that entity attributes
themselves have probabilities; thus, even a possible 1-world may be describing
multiple different (nonprobabilistic) databases. These different databases are what
we call solutions.

Each solution essentially represents a different combination over the attributes
of the entities participating in a specific merge. For instance, consider the data
in Fig. 9.3 and, in particular, the attributes involved in merge(e;, e;). The entity
merge(ey, e2) needs to include all attributes from entities e; and e,, as shown in
Fig. 9.4. Two issues need to be taken into consideration. One is the probabilities
of the attributes, specifically in the case of duplication, and the other is the
dependencies that may exist among them.

The simplest approach regarding attribute dependencies is to consider the
attributes as independent and include them all as attributes in the merge result
entity. However, the attributes that appear in real-world datasets are not always
independent. The correlations (i.e., dependencies) between attributes that need to
be considered in attribute merge highly depend on the nature of the sources and
their datasets. Our framework is able to handle such correlations in a uniform
manner. A simple method is to cluster the exclusive attributes from each entity, i.e.,

Attributes for merge(e; =¢,)

aid. | name value P Solutions
® qj |starring | Daniel Radcliffe |0.7 M 2 3 @
¢ ayp |starring | Emma Watson | 0.4 ap | |ax | |aw| |az
ap, | writer J.K. Rowling 0.6 ap | |an | |axn | |ax
a3 | genre Fantasy 0.6 ap | lapn| |an| |an
® a, |starring | Radcliffe, Daniel |0.5 ap| |aiz| |ai3| |d13
< ap | starring | Watson, Emma (IT) | 0.9

Fig. 9.4 The attributes involved in merge(e;, e;) along with the solutions when we deal with
exclusive attributes (same name and similar values)
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M = {{ei.a;i,ei.aj,...}}. We can then use this set to generate the solutions
and compute their probability. The following paragraphs provide more details for
generating solutions.

9.4.4.1 Independent Attributes

One option is to assume no correlation between the attributes and thus no restrictions
on which attributes to include in the merge result entity. In this case, there is only
one solution which is given by the union of all entity attributes.

merge(ey, e, ..., e,) = (id',U!_ e;.A)

9.4.4.2 Exclusive Attributes

In certain cases, the attributes originating from different entities participating in
the entity merge are exclusive. This requires that only one occurrence of such an
attribute to be in the entity resulted by the merge. A typical example of such an
attribute is the distinct attribute names, e.g., a person can have only one name.
Other examples are the attributes with the same name but similar (semantically or
syntactically) values, e.g., attributes a; and a,; from Fig. 9.4. A simple method is
to cluster the exclusive attributes from each entity, i.e., M = {{ej.c;, e1.0tj,...}}.
We can then use this set to generate worlds with these correlations:

merge(ey, ..., e,) = (id, A), where

AC My x My x---x My)U{a|a ¢ UL M .o}

The overall probability of a possible world depends on the probability of the
attributes included or not included in the world. It is computed as the product of
probability p* when attribute « is part of the world and (1 — p%) when attribute «
is not part of it:

Pr( e’ |merge(es, ..., e,)) = Pr(l — world) x l—[ p*

ace’ A

< I  a=p.

a¢e/ A&kace . A

Example 9.7. Figure 9.4 shows the attributes involved in merge(ey, e;). The exclu-
sive attributes are given by set M = {{&9, 020}, {11, 021 }}. Figure 9.4 shows the
four generated possible worlds, and their probability is computed according to above
formula.
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9.5 Evaluation

This section presents the results of the experimental evaluation for the suggested
entity linkage methodology. The goal was twofold: (1) to study the effectiveness
of our approach and identify its advantages over traditional techniques for entity
linkage and (2) to investigate the efficiency of query processing and the overhead
it introduces. We implemented our approach using Java 1.6 and performed all
experiments on a computer with 5,400 rpm hard disk, a core 2 duo processor of
1.8 Ghz, and 2 GB RAM. For storing entities, we used MySQL 5, on the same
computer. The following paragraphs present our datasets.

Movie Dataset. For evaluating the efficiency, we needed a sufficiently large dataset.
Also, to investigate effectiveness, we needed linkages generated from different
linkage techniques. We generated such a dataset by integrating data describing
movies coming from two real-world systems, IMDb and DBpedia. IMDb data were
stored in relational format, and DBpedia data were stored in RDF format. We
converted both datasets to our data model and stored them in a relational database.
To find the true matches (i.e., ground truth), we have used the imdb_id field from
the DBpedia dataset, which contains the id of the movie in the IMDb dataset. The
table in Fig. 9.5 shows the details for the movie dataset.

For generating the entity linkages, we compared the movie titles using two
standard string similarity methods [9], Jaccard and Jaro. Figure 9.5 plots the
precision-recall plot resulting when using these techniques to link entities, with
Jaccard being more successful in linking IMDb to DBpedia movies than Jaro.
As expected, for both techniques, we see the clear dependency between precision
and recall. While recall increases, precision decreases, and vice versa. The linkage
techniques always have to decide the trade-off between precision and recall. In our
experiments, we investigate how our approach addresses this issue.

| IMDb | DBpedia | Real-world objects
Entities:  23.182 Entities:  28.040 13.435
Attributes:  820.999 | Attributes:  186.655 ’
1.00
_ 095 e -
S 0.90 s
T < S S ——
© 0801 T i
a = Jaccard -------- T e
0.75 Jarg - -
0.20 0.40 0.60 0.80 0.90 1.00

Fig. 9.5 Information about the movie datasets: the data composing the dataset (fop) and the
precision-recall plot for two entity linkage techniques (bottom)
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|Attributes|Entities|Real-world objects” Entity linkages (under threshold #)

| 5764 | 2882 | 9774 ||t = 0.52]t = 0.58]t = 0.62]r = 0.68t = 0.72]r = 0.78
12440 | 12012 | 10775 | 6394 | 5985 | 4184

Fig. 9.6 Information about the Cora datasets: the data composing the dataset (leff) and the number
of linkages for various thresholds (right)

Cora Dataset. Our second dataset was a collection of publications and authors
from CiteSeer.! Cora dataset is typically used to evaluate entity linkage techniques
[3,16,17]. Its data comes from CiteSeer, a real-world application, and it contains
various author descriptions that refer to the same real-world object (maximum is 88
author instances describing the same real-world object).

We generated entity linkages between authors (i.e., entities) using the probabilis-
tic entity linkage [26]. Entity linkage techniques typically select a linkage threshold
and incorporate in the original data all entities with corresponding linkages above
this threshold. Figure 9.6 provides the details for this dataset along with the number
of linkages under different thresholds. Precision and recall of the generated entity
linkages are similar to the ones generated by other algorithms such as [16, 17]. For
our approach, we did not apply such a threshold but also used the linkages with low
probabilities.

Entity Queries. The evaluations for both datasets were performed with 800 queries.
Each query was generated by randomly selecting attributes of entities belonging
to the same real-world object. We generated queries for real-world objects which
contained at least two entities in our dataset. All reported results are computed on
the average of 800 queries.

9.5.1 Effectiveness of Query Processing

We evaluate effectiveness of entity-aware query processing in a twofold manner.
First, we examine the quality of entities returned when querying with our approach.
Second, we compare entities returned from entity-aware query processing (EAQP)
with entities returned when we use directly the results of the entity linkage
techniques (ELA), i.e., applying the threshold on the entity linkages. We performed
both evaluations using the Cora Dataset.

Our first experiment was as follows. We used the entity linkage technique
to link all authors in the Cora dataset and stored the proposed linkages in the
database. Then we processed the 800 queries and compared the results returned with
EAQP and with ELA. As we already explained, entity linkage techniques select a
threshold and accept linkages that have a higher probability than this threshold.

Thttp://www.cs.umass.edu/ mccallum/data/cora-refs.tar.gz
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Fig. 9.7 F-measure with entity-aware query processing (EAQP) and entity linkage algorithm
(ELA) over various thresholds for the accepted linkages

Selecting a low threshold (# = 0.6) will provide linkages with a high recall but
low precision, whereas selecting a higher threshold (+ = 0.8) will provide linkages
with significantly higher precision but also with lower recall. One can easily see
that when the selected threshold increases, the number of linkages is reduced since
we then accept only the entities with high probabilities (see Fig. 9.6 for the exact
numbers). We examine the behavior of the entity-aware query processing as well as
the entity linkage algorithm when the value of the threshold is increased.

To measure quality of query results, we computed F-measure, which is a
weighted harmonic mean of precision and recall. We consider a query as correct
when it returns the real-world object by merging the information found in the
various corresponding entities.

Figure 9.7 shows the average F-measure of the 800 queries for various entity
linkage thresholds. As expected, when moving toward higher thresholds, the entity
linkage technique accepts less and less linkages. This makes the technique unable to
find the entities described by the queries. On the contrary, even for high thresholds,
EAQP is able to identify the entities. For example, for # = 0.66, EAQP returned the
correct entity for around 10% more queries than ELA. This is because EAQP can
find connected linkages to construct the entity described in the query. ELA had to
reject these linkages because of their low threshold. The exact precision and recall
values for some of these thresholds are shown in the following table:

t EAQP ELA

Precision Recall Precision Recall
0.62 1.00 0.73 1.00 0.61
0.63 0.99 0.71 1.00 0.60
0.64 0.91 0.65 1.00 0.47

Figure 9.8 shows the numbers of queries that were correctly answered for
different linkage thresholds. As shown, query processing with our approach returns
the correct results to more queries than ELA.
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We further analyzed the results of this evaluation and identified two situations
in which EAQP performs better than ELA. The first is that our approach has
less failures, i.e., empty result set for queries. For instance, for t = 0.6, EAQP
was able to return the correct answers for the 150 queries in which ELA did not
return anything. The second situation is that there are cases in which the entities
returned by EAQP were with higher confidence (i.e., with higher probability) than
the entities returned by ELA. As shown in Fig. 9.8, for t = 0.6, EAQP returned
421 correct answers, whereas ELA returned 238 correct answers. For 91 answers,
EAQP had higher probability than ELA. Figure 9.9 presents the numbers for these
two situations.

600 UK

500 =SS
400 X,

3 <
£ t\ I
300 R
o
* \B\H———
200 B By
EAQP -----
100 |-oommeeemeeeees ‘ELA ..... e
0 i
0.5 0.55 0.6 0.65 0.7 0.75 0.8

entity linkage threshold

Fig. 9.8 Number of queries correctly returned with EAQP and ELA over various thresholds for
the accepted linkages

! ! ! ! !
600 3 EAQP entities had higher probability -—-4- -
EAQP found entities, but ELA failed -- -®--
500
3 400
§ 300
o
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200 5 T
)N .- e
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0 S o’
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Fig. 9.9 Number of queries from the ones shown in Fig.9.8 in which EAQP returned answers
with higher probability and identified requested entities, whereas the ELA failed
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9.5.2 Efficiency of Query Processing

We now report the results for the efficiency evaluation of our approach.

Size of Generated Factors. The core of our approach is based on generating
factors by grouping linkages which are pairwise linked (Sect. 9.4.1). During query
processing, we select the related factors and process them to construct the entities.
The sizes of the factors influence the execution time of our approach.

We computed the size of the generated factors as the number of entity linkages
contained in the factors. We then constructed the histogram of factor sizes.
Figure 9.10 shows appearances per factor sizes as generated by both entity linkage
techniques, Jaro and Jaccard. As shown, most of the factors have a small size and
few factors are of bigger size. In addition, we see that for the entity linkage technique
generated with Jaro, we have more factors of bigger sizes. Considering again the
characteristics of the linkages generated by the Jaro and Jaccard (cf. Fig. 9.5),
precision and recall results of Jaccard were better than Jaro. Clearly, Jaro is less
capable to identify the correct linkages between entities, and thus, it generates more
linkages which are less certain. This generates more pairwise-linked entities which
are now reflected in the size of factors.

Time to Retrieve Possible Worlds. Given that factors have different sizes, we
measured the time needed to identify the possible world with the highest probability
in respect to the factor size (Sect. 9.4.3). Figure 9.11 shows the required time for
different factor sizes. As expected, for small factor sizes (i.e., 20—40 entity linkages)
which is the dominating majority among the factors, the algorithm requires around
1 millisecond. For larger factor sizes, the algorithm requires more time, which
however still remains below 4 ms.
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Fig. 9.10 Appearance numbers for the factor sizes generated for our two movie datasets
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Fig. 9.11 Average time for computing the possible world with the maximum probability over
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Fig. 9.12 Total time for processing queries over different numbers of entity linkages in dataset

Execution Time. Our final evaluation was to measure the time required for entity-
aware query processing and also to compute the overhead that a system will have
for offering this additional functionality. Figure 9.12 shows the average time taken
to answer queries with and without our approach. We show time over different
numbers of entity linkages in dataset. As expected, there is an increase in the
time required with our approach, but this is relatively small and it remains under
70ms. Furthermore, time does not increase as the dataset gets larger. On the
contrary, query time remains stable even when the dataset is double the size. This
behavior results from the effective grouping of linkages into factors which allows the
algorithm to easily detect and use only a small subset of the linkages during query
processing.
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9.5.3 Evaluation Summary

Summarizing, the result of our experimental evaluation confirms the following:

* Incorporating entity-aware query processing in a system makes the system able
to better handle the entity linkage problem and especially provide query answers
which reflect the possible entity solutions for the current data.

e Our approach has a small overhead in time required for processing queries, but
due to our efficient processing strategy, this cost remains low and constant even
for large datasets with a large amount of entity linkages.

9.6 Conclusions

We have introduced a novel approach that allows on-the-fly entity-aware query
processing in the presence of linkage information. Our approach can be applied
on various data formats and structures using a generic entity representation. We
explained how query processing can be performed efficiently over the entities and
their possible linkages as these are generated by existing entity linkage techniques.
Special focus was given on handling the uncertainty that appears in the entity
linkage information as well as in the entity data. Our evaluation shows that the
approach is both efficient and effective in answering entity queries.

We are currently investigating several directions to extend our approach. First, we
would like to cover provenance information related to the possible linkage decisions
and answers returned by querying. Also, we would like to investigate the implica-
tions of having conflicting information for the entity descriptions, as is typically the
case for Web data, and to try out effective ways to deal with such conflicts.
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