
A Hidden Markov Model Approach to Keyword-based
Search over Relational Databases?

Sonia Bergamaschi1, Francesco Guerra1, Silvia Rota1, and Yannis Velegrakis2

1 Università di Modena e Reggio Emilia
firstname.lastname@unimore.it

2 University of Trento
velgias@disi.unitn.eu

Abstract. We present a novel method for translating keyword queries over rela-
tional databases into SQL queries with the same intended semantic meaning. In
contrast to the majority of the existing keyword-based techniques, our approach
does not require any a-priori knowledge of the data instance. It follows a proba-
bilistic approach based on a Hidden Markov Model for computing the top-K best
mappings of the query keywords into the database terms, i.e., tables, attributes
and values. The mappings are then used to generate the SQL queries that are
executed to produce the answer to the keyword query. The method has been im-
plemented into a system called KEYRY (from KEYword to queRY).

1 Introduction

Keyword searching is becoming the de-facto standard for information searching, mainly
due to its simplicity. For textual information, keyword query answering has been exten-
sively studied, especially in the area of information retrieval [14]. However, for struc-
tured data, it has only recently received considerable attention [5, 12]. The existing
techniques for keyword searching over structured sources heavily rely on an a-priori
instance-analysis that scans the whole data instance and constructs some index, a sym-
bol table or some structure of that kind which is later used during run time to identify
the parts of the database in which each keyword appears. This limits the application of
these approaches to only cases where direct a-priori access to the data is possible.

There is a great deal of structured data sources that do not allow any direct ac-
cess to their own contents. Mediator-based systems, for example, typically build a vir-
tual integrated view of a set of data sources. The mediator only exposes the integrated
schema and accesses the contents of the data sources at query execution time. Deep web
databases are another example of sources that do not generally expose their full content,
but offer only a predefined set of queries that can be answered, i.e., through web forms,
or expose only their schema information. Even when the access to the data instance
is allowed, it is not practically feasible in a web-scale environment to retrieve all the
contents of the sources in order to build an index. The scenario gets even worst when

? This work was partially supported by project “Searching for a needle in mountains of data”
http://www.dbgroup.unimo.it/keymantic.

Fig. 1. A fragment of the DBLP schema

the data source contents are subject to frequent updates, as it happens, for instance, in
e-commerce sites, forums/blogs, social networks, etc.

In this paper we present an approach, implemented in the KEYRY (from KEYword
to queRY) prototype system, for keyword searching that does not assume any knowl-
edge about the data source contents. The only requirement is for the source to provide
a schema, even a loosely described, for its data. Semantics, extracted directly from the
data source schema, are used to discover the intended meaning of the keywords in a
query and to express it in terms of the underlying source structures. The result of the
process is an interpretation of the user query in the form of a SQL query that will be
executed by the DBMS managing the source. Notice that there are many interpreta-
tions of a keyword query in terms of the underlying data source schemas, some more
likely and other less likely to capture the semantics that the user had in mind when
she was formulating the keyword query. As usual in keyword based searching systems,
assigning a ranking is a critical task since it avoids the users to deal with uninteresting
results. One of the innovative aspects of our approach is that we adopt a probabilistic
approach based on a Hidden Markov Model (HMM) for mapping user keywords into
database terms (names of tables and attributes, domains of attributes). Using a HMM
allows us to model two important aspects of the searching process: the order of the key-
words in a query (this is represented by means of the HMM transition probabilities)
and the probabilities of associating a keyword to different database terms (by means of
the HMM emission probabilities). A HMM typically has to be trained in order to op-
timize its parameters. We propose a method providing a parameter setting not relying
on any training data. In particular, we developed some heuristic rules that applied to the
database schema provide the transition probabilities. Moreover, we approximated the
emission probability by means of similarity measures (we use string similarity for mea-
suring the distance between keywords and schema elements and regular expressions
for evaluating the domain compatibilities, but our approach is independent of the mea-
sure adopted). Finally, we developed a variation of the HITS algorithm [9], typically
exploited for ranking web pages on the basis of the links among them, for computing

an authority score for each database term. We consider these scores as the initial state
probabilities required by the HMM.

More specifically, our key contributions are the following: (i) we propose a new
probabilistic approach based on a HMM for keyword based searching over databases
that does not require to build indexes over the data instance; (ii) we develop a method
for providing a parameter setting allowing keyword searching without any training data
and (iii) we exploit the List Viterbi algorithm that decodes the HMM in order to obtain
the top-K results.

The remainder of the paper is as follows. Section 2 is an overview of our approach
for keyword-based searching over databases. The problem is formalized in Section 3
and our proposal is described in Section 4. Section 5 describes related work and we
conclude in Section 6 with a brief wrap up and some suggestions for future work.

2 KEYRY at a glance

A keyword in a keyword query may in principle be found in any database term (i.e.,
as the name of some schema term (table or attribute) or as a value in its respective
domain). This gives rise to a large number of possible mappings of each query keyword
into database term. These mappings are referred to as configurations. Since no access
to the data source instance is assumed, selecting the top-K configurations that better
represents the intended semantics of the keyword query is a challenging task.

Figure 1 illustrates a fragment of a relational version of the DBLP database3. The
keywords in a query may be associated to different database terms, representing dif-
ferent semantics of the keyword query. For instance, a user may be interested in the
papers written by Garcia-Molina published in a journal on 2011 and poses the query
consisting of the three keywords Garcia-Molina, journal and 2011. The key-
word journal should be mapped into the table Journal, 2011 into the domain of the
attribute Year in the Journal table, and Garcia-Molina should be an element of the
domain of the attribute Name in the table Person. If we do not know the intended mean-
ing of the user query, we may attribute different semantics to the keywords, e.g. 2011
might be the number of a page or part of the ISSN journal number. Not all the keywords
may be mapped into all the database terms: certain mappings are actually more likely
than other. Since KEYRY does not have any access to the data instance, we exploit the
HMM emission probabilities to rank the likelihood of each possible mapping between
a keyword and a database term. In our approach, we approximate the emission proba-
bilities by means of similarity measures based on semantics extracted from the source
schema (e.g. names of attributes and tables, attribute domains, regular expressions).

Moreover, based on known patterns of human behavior [8], we know that keywords
related to the same topic are typically close to each other in a query. Consequently,
adjacent keywords are typically associated to close database terms, i.e. terms that are
part of the same table or belong to tables connected through foreign keys. For example,
in the previous query the mapping of the keyword journal into the table Journal
increases the likelihood that 2011 is mapped into the domain of an attribute of the table

3 http://www.informatik.uni-trier.de/ ley/db/

Journal. The HMM transition probabilities, that we estimate on the basis of heuristic
rules applied to the database schema, allows KEYRY to model this aspect. Section 4
describes how KEYRY computes the top-K configurations that better approximate the
intended meaning of a user query.

Then, the possible paths joining the database terms in a configuration have to be
computed. Different paths correspond to different interpretations. For example, let us
consider the query “Garcia-Molina proceedings 2011” and the configura-
tion that maps proceeding into the table Proceeding, 2011 into the domain of the
attribute Year in the same table, and Garcia-Molina into the domain of the attribute
Name in the table Person. Two possible paths may be computed for this configuration,
one involving the tables InProceeding and Author P, with the meaning of retrieving
all the proceedings where Garcia-Molina appears as an author, and the second involv-
ing the table Editor and returning the proceedings where Garcia-Molina was an editor.
Different strategies have been used in the literature to rank the interpretations. One
popular option is the length of the join path, but other heuristics [12] can also be used.
In KEYRY we compute all the possible paths and we rank them on the basis of their
length. However, this is not the main focus of the current work and we will not elaborate
further on it.

3 Problem statement

Definition 1. A databaseD is a collection Vt of relational tablesR1, R2, . . . , Rn. Each
table R is a collection of attributes A1, A2, . . . , AmR

, and each attribute A has a do-
main, denoted as dom(A). Let Va={A | A∈R ∧ R∈Vt} represent the set of all the
attributes of all the tables in the database and Vd={d | d=dom(A) ∧ A∈Va} repre-
sents the set of all their respective domains. The database vocabulary of D, denoted as
VD, is the set VD=Vt∪Va∪Vd. Each element of the set VD is referred to as a database
term.

We distinguish two subsets of the database vocabulary: the schema vocabulary VSC

= Vt ∪ Va and the domain vocabulary VDO = Vd that concerns the instance informa-
tion. We also assume that a keyword query KQ is an ordered l-tuple of keywords (k1,
k2, . . . , kl).

Definition 2. A configuration fc(KQ) of a keyword query KQ on a database D is an
injective function from the keywords in KQ to database terms in VD. In other words, a
configuration is a mapping that describes each keyword in the original query in terms
of database terms.

The reason we consider a configuration to be an injective function is because we as-
sume that: (i) each keyword cannot have more than one meaning in the same configura-
tion, i.e., it is mapped into only one database term; (ii) two keywords cannot be mapped
to the same database term in a configuration since overspecified queries are only a small
fraction of the queries that are typically met in practice [8]; and (iii) every keyword is
relevant to the database content, i.e., keywords always have a correspondent database
term. Furthermore, while modelling the keyword-to-database term mappings, we also

assume that every keyword denotes an element of interest to the user, i.e., there are no
stop-words or unjustified keywords in a query. In this paper we do not address query
cleaning issues. We assume that the keyword queries have already been pre-processed
using well-known cleansing techniques.

Answering a keyword query over a database D means finding the SQL queries that
describe its possible semantics in terms of the database vocabulary. Each such SQL
query is referred to as an interpretation of the keyword query in database terms. An in-
terpretation is based on a configuration and includes in its clauses all the database terms
that are part of the image4 of the query keywords through the configuration. In the cur-
rent work, we consider only select-project-join (SPJ) interpretations that are typically
the queries of interest in similar works [2, 7], but interpretations involving aggrega-
tions [11] are part of our future work.

Definition 3. An interpretation of a keyword query KQ = (k1, k2, . . . , kl) on a
database D using a configuration f∗c (KQ) is an SQL query in the form
select A1, A2, . . ., Ao from R1 JOIN R2 JOIN . . . JOIN Rp where A′1=v1 AND
A′2=v2 AND . . . AND A′q=vq
such that the following holds:

– ∀A∈{A1, A2, . . . , Ao}: ∃k∈KQ such that f∗c (k)=A
– ∀R∈{R1, R2, . . . , Rp}: (i) ∃k∈KQ: f∗c (k)=R or (ii) ∃ki, kj∈KQ: f∗c (ki)=Ri ∧
f∗c (kj)=Rj ∧ exists a join path from Ri to Rj that involves R

– ∀ “A′=v”∈{A′1=v1, A′2=v2, . . . , A′o=vo}: ∃k∈KQ such that f∗c (k)=dom(A′) ∧
k = v

– ∀k∈KQ: f∗c (k)∈{A1, A2, . . . , Ao, R1, R2, . . . , Rp, dom(A′1), . . . , dom(A′q)}

The existence of a database term in an interpretation is justified either by belonging
to the image of the respective configuration, or by participating in a join path connecting
two database terms that belong to the image of the configuration. Note that even with
this restriction, due to the multiple join paths in a database D, it is still possible to have
multiple interpretations of a keyword queryKQ given a certain configuration f∗c (KQ).
We use the notation I(KQ, f∗c (KQ), D) to refer to the set of these interpretations, and
I(KQ,D) for the union of all these sets for a query KQ.

Since each keyword in a query can be mapped into a table name, an attribute name
or an attribute domain, there are 2Σn

i=1|Ri| + n different mappings for each keyword,
with |Ri| denoting the arity of the relationRi and n the number of tables in the database.
Based on this, and on the fact that no two keywords can be mapped to the same database
term, for a query containing l keywords, there are |VD|!

(|VD|−l)! possible configurations. Of
course, not all the interpretations generated by these configurations are equally mean-
ingful. Some are more likely to represent the intended keyword query semantics. In
the following sections we will show how different kinds of meta-information and inter-
dependencies between the mappings of keywords into database terms can be exploited
in order to effectively and efficiently identify these meaningful interpretations and rank
them higher.

4 Since a configuration is a function, we use the term image to refer to its output.

4 Computing configurations using a HMM

In a first, intuitive attempt to define the configuration function we can divide the prob-
lem of matching a whole query to database terms into smaller sub-tasks. In each sub-
task the best match between a single keyword and a database term is found. Then the
final solution to the global problem is the union of the matches found in the sub-
tasks. This approach works well when the keywords in a query are independent of
each other, meaning that they do not influence the match of the other keywords to
database terms. Unfortunately, this assumption does not hold in real cases. On the con-
trary, inter-dependencies among keywords meanings are of fundamental importance in
disambiguating the keyword semantics.

In order to take into account these inter-dependencies, we model the matching func-
tion as a sequential process where the order is determined by the keyword ordering in
the query. In each step of the process a single keyword is matched against a database
term, taking into account the result of the previous keyword match in the sequence. This
process has a finite number of steps, equal to the query length, and is stochastic since the
matching between a keyword and a database term is not deterministic: the same key-
word can have different meanings in different queries and hence being matched with
different database terms; vice-versa, different database terms may match the same key-
word in different queries. This type of process can be modeled, effectively, by using a
Hidden Markov Model (HMM, for short), that is a stochastic finite state machine where
the states are hidden variables.

A HMM models a stochastic process that is not observable directly (it is hidden),
but it can be observed indirectly through the observable symbols produced by another
stochastic process. The model is composed of a finite number N of states. Assuming
a time-discrete model, at each time step a new state is entered based on a transition
probability distribution, and an observation is produced according to an emission prob-
ability distribution that depends on the current state, where both these distributions are
time-independent. Moreover, the process starts from an initial state based on an initial
state probability distribution. We will consider first order HMMs with discrete observa-
tions. In these models the Markov property is respected, i.e., the transition probability
distribution of the states at time t + 1 depends only on the current state at time t and
it does not depend on the past states at time 1, 2, . . . , t − 1. Moreover, the observa-
tions are discrete: there exists a finite number, M, of observable symbols, hence the
emission probability distributions can be effectively represented using multinomial dis-
tributions dependent on the states. More formally, the model consists of: (i) a set os
states S = {si}, 1 ≤ i ≤ N ; (ii) a set of observation symbols V = {vj}, 1 ≤ j ≤ M ;
(iii) a transition probability distribution A = {aij}, 1 ≤ i ≤ N , 1 ≤ j ≤ N where

aij = P (qt+1 = sj |qt = si) and
∑

0<j<N

aij = 1

(iv) an emission probability distributionB = {bi(m)}, 1 ≤ i ≤ N , 1 ≤ m ≤M where

bi(m) = P (ot = vm|qt = si) and
∑

0<m<M

bi(m) = 1

and (v) an initial state probability distribution Π = {πi}, 1 ≤ i ≤ N where

πi = P (q1 = si) and
∑

0<i<N

πi = 1

Based on the above, the notation λ = (A,B,Π) will be used to indicate a HMM.
In our context, the keywords inserted by the user are the observable part of the process,
while the correspondent database terms are the unknown variables that have to be in-
ferred. For this reason, we model the keywords as observations and each term in the
database vocabulary as a state.

4.1 Setting HMM parameters

In order to define a HMM, its parameters have to be identified. This is usually done
using a training algorithm that, after many iterations, converges to a good solution for
the parameter values. In our approach we introduce some heuristic rules that allow the
definition of the parameter values even when no training data is available. The HMM
parameter values are set by exploiting the semantics collected from the data source
metadata. In particular:
The transition probabilities are computed using heuristic rules that take into account
the semantic relationships that exist between the database terms (aggregation, gener-
alization and inclusion relationships). The goal of the rules is to foster the transition
between database terms belonging to the same table and belonging to tables connected
through foreign keys. The transition probability values decrease with the distance of the
states, e.g. transitions between terms in the same table have higher probability than tran-
sitions between terms in tables directly connected through foreign keys, that, in turn,
have higher probability than transitions between terms in tables connected through a
third table.
The emission probabilities are computed on the basis of similarity measures. In par-
ticular two different techniques are adopted for the database terms in VSC and VDO.
We use the well known edit distance for computing the lexical similarity between the
keywords and each term (and its synonyms extracted from Wordnet5) in the schema
vocabulary VSC . On the other side, the similarity between keywords and the terms in
the domain vocabulary VDO is based on domain compatibilities and regular expres-
sions. We use the calculated similarity as an estimate for the conditional probability
P (qt = si|ot = vm) then, using the Bayes theorem, we calculate the emission proba-
bility P (ot = vm|qt = si). Note that the model is independent of the similarity mea-
sure adopted. Other more complex measures that take into account external knowl-
edge sources (i.e., public ontologies and thesauri) can be applied without modifying the
model.
The initial state probabilities are estimated by means of the scores provided by the
HITS algorithm [9]. The HITS algorithm is a link analysis algorithm that calculates
two different scores for each page: authority and hub. A high authority score indicates
that the page contains valuable information with respect to the user query, while a high

5 http://wordnet.princeton.edu

hub score suggests that the page contains useful links toward authoritative pages. This
algorithm has been adapted to our context in order to rank the tables in a database based
on their authority scores. The higher the rank, the more valuable is the information
stored in the tables. For this reason, the authority score is used as an estimate of the
initial state probabilities.

Adapted HITS algorithm In order to employ the HITS algorithm, we build the
database graph GD = (Vt, Efk) which is a directed graph where the nodes are the
database tables in Vt and the edges are connections between tables through foreign
keys, i.e., given two tables Ri, Rj there exists an edge in Efk from Ri to Rj , denoted
as Ri → Rj , if an attribe in Rj is referred by a foreign key defined in Ri. Let A be the
n x n adjacency matrix of the graph GD

A = [aij], aij = 1 iff eij ∈ Efk, aij = 0 iff eij /∈ Efk

In our approach we use the modified matrix B that takes into account the number of
attributes minus the number of foreign keys in a table (foreign keys are considered as
links).

B = [bij], bij = aij · (|Ri| − ||{Ri → Rj , 1 ≤ j ≤ n}||)

Let us define the authority weight vector auth and the hub weight vector hub

authT = [u1, u2, . . . , un] and hubT = [v1, v2, . . . , vn]

The algorithm initializes these vectors with uniform values, e.g., 1
n , then the vectors

are updated in successive iterations as follows{
auth = BT · hub
hub = B · auth

At each iteration a normalization step is performed to obtain authority and hub
scores in the range [0, 1]. After few iterations the algorithm converges and the authority
scores are used as estimate for the initial state probabilities.

Example 1. Let us consider the database in Figure 1. This database generates 53 states6,
one for each database term. Concerning the transition probability distribution, the
heuristic rules foster transitions between database terms of the same table or in ta-
bles connect via foreign key. According to this, the most probable states subsequent to
the state associated to the table Journal are the states associated to the names and the
domains of the attributes Title, Volume, Number, etc., then, the state associated to the
table Author J, subsequently, the states associated to the table Person and so on. We
use different similarity measures for computing the emission probability distribution.
Domain compatibility and regular expressions are used for measuring the probabilities
of the values associated to states of terms in the VDO, e.g., the possible values associ-
ated to the state representing the Year of the table Journal are numeric values between

6 Since in this schema the primary key values are not meaningful for the user, we removed the
states associated to these database terms.

1900 and 2100. The probabilities of values associated to states if terms in the VSC is
computed on the basis of lexical similarity computed on the term and on its synonyms,
hypernyms and hyponyms. For example, we consider “article” as synonym of journal.
In our experiments we noticed that, by applying the adaptation of the HITS algorithm,
the states corresponding to the database terms in the tables Journal and Inproceeding
obtain the highest authority scores.

4.2 Decoding the HMM

Once the parameters A, B, and Π have been defined, the resulting HMM is used to
compute the top-K configurations by applying the List Viterbi algorithm [10], which
is a generalization of the well known Viterbi algorithm [6]. The algorithm has also
been applied, using a different formulation, to HMMs in order to solve the following
problem:

Given a HMM λ and an observation sequence Ol = (o1, o2, . . . , oT) find the or-
dered list of the K state sequences Q̂k

l = (qk1 , q
k
2 , . . . , q

k
T), 1 ≤ k ≤ K which have the

highest probability of generating Ol

In other words, the algorithm generalizes the well-known Viterbi algorithm finding
the top-K maximum likelihood state sequences (MLSSs) instead of the single MLSS
found by the original algorithm.

Example 2. The top-2 results of the keyword query “proceeding ER 2011” are
the ones mapping the keyword proceeding into the table proceeding, ER into the
domain of the attribute Title of the table proceeding, and 2011 into the domains of
the attributes Year and ISBN, respectively. Both the solutions have the same transition
probabilities but different emission probabilities since the likelihood of the mapping
of 2011 into the attribute Year is higher than the one into ISBN. Other mappings are
possibles: for example the configuration that maps the keyword proceeding into the
table proceeding, ER into the domain of the attribute Title of the table proceeding, and
2011 into the domain of the attribute Year of the table Journal has rank 9.

5 Related work

There has been already a number of different systems that consider keyword searching
over structured or semi-structured data. Specifically, well-known systems of the former
include BANKS [1], DISCOVER [7], DBXplorer [2], QUICK [13], SQAK [11] and
many others presented in various surveys [5, 12]. Their typical approach is to perform
an off-line pre-prosessing step that scans the whole data instance and constructs an
index, a symbol table or some structure of that kind which is later used at run time
to identify the parts of the database in which each keyword appears. After that, they
perform a path discovery algorithm to find the different ways in which these tables are
connected. The algorithms range from finding minimal joining networks [7] to Steiner
trees [1]. In contrast to all these approaches, KEYRY is able to achieve similar results
without the need of accessing and scanning the data. QUICK guides the users into a
series of query refinements to find the one that describes their intended semantics, but

it assumes that there is only one such semantics, while practice has shown that there
may be different alternatives. Keymantic [3, 4] has goals similar to ours but it follows
a fundamentally different approach. It handles the keyword search as a bipartite graph
assignment problem and finds the solutions using an extended version of the Hungarian
algorithm.

6 Conclusion and future work

We described KEYRY, a probabilistic keyword-based searching system for relational
databases that is based on a HMM for computing the top-K best mappings of the query
keywords into the database terms. The use of HMM allows the efficient modeling of the
order of the keywords in a query and the probabilities of associating them to different
database terms. Although a HMM typically has to be trained to optimize its parameters,
we propose a method that does not rely on any particular training.

References

1. B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, Parag, and S. Sudarshan.
Banks: Browsing and keyword searching in relational databases. In VLDB, pages 1083–
1086, 2002.

2. S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search over
relational databases. In ICDE, pages 5–16. IEEE Computer Society, 2002.

3. S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and Y. Velegrakis. Keyword search over
relational databases: a metadata approach. In SIGMOD. ACM, 2011.

4. S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. T. Lado, and Y. Velegrakis. Keymantic:
Semantic keyword-based searching in data integration systems. PVLDB, 3(2):1637–1640,
2010.

5. S. Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing search with structure. IEEE Data
Eng. Bull., 33(1):3–24, 2010.

6. J. Forney, G.D. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268 – 278, 1973.
7. V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In

VLDB, pages 670–681, 2002.
8. R. Kumar and A. Tomkins. A Characterization of Online Search Behavior. IEEE Data

Engineering Bulletin, 32(2):3–11, 2009.
9. L. Li, Y. Shang, H. Shi, and W. Zhang. Performance evaluation of hits-based algorithms. In

M. H. Hamza, editor, Communications, Internet, and Information Technology, pages 171–
176. IASTED/ACTA Press, 2002.

10. N. Seshadri and C.-E. W. Sundberg. List viterbi decoding algorithms with applications. IEEE
Transactions on Communications, 42(234), 1994.

11. S. Tata and G. M. Lohman. SQAK: doing more with keywords. In SIGMOD, pages 889–902.
ACM, 2008.

12. J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

13. G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic
queries-incremental query construction on the semantic web. Journal of Web Semantics,
7(3):166–176, 2009.

14. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2), 2006.

