
Understanding Linked Open Data through Keyword
Searching: the KEYRY approach∗

Sonia Bergamaschi
University of Modena and

Reggio Emilia, Italy
sonia.bergamaschi@unimore.it

Francesco Guerra
University of Modena and

Reggio Emilia, Italy
francesco.guerra@unimore.it

Silvia Rota
University of Modena and

Reggio Emilia, Italy
silvia.rota@unimore.it

Yannis Velegrakis
University of Trento, Italy

velgias@disi.unitn.eu

ABSTRACT
We introduce KEYRY, a tool for translating keyword queries over
structured data sources into queries formulated in their native query
language. Since it is not based on analysis of the data source
contents, KEYRY finds application in scenarios where sources
hold complex and huge schemas, apt to frequent changes, such as
sources belonging to the linked open data cloud. KEYRY is based
on a probabilistic approach that provides the top-k results that bet-
ter approximate the intended meaning of the user query.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query formulation

General Terms
Design, Algorithms

Keywords
Semantic keyword-based searching, Intensional Knowledge

1. INTRODUCTION
Linked open data has become one of the fundamental blocks for
achieving interoperability on the Web. It is a large corpus of linked
information contributed by different organizations and individuals.
This information is exploited during query answering to translate or
associate data expressed in terms of one vocabulary, into equivalent
terms of another. The translation takes place by querying the cor-
pus. The corpus has been modeled in RDF, thus, the query language
of choice is naturally SPARQL. SPARQL is a structured language,
which means that the user is still required to have some idea about
the structure and the semantics of the data held. The majority of
linked open data is coming from well-known data sources with a
publicly available schemas. Nevertheless, these schemas are large
and complex, thus making their knowledge difficult to acquire.

In recent years we have witnessed an exponential increase on the
amount of linked open data and the number of sources that con-
tribute to it. Nevertheless, these sources hold complex and huge
schemas, thus difficult to be understood. Users have a hard time
navigating the labyrinth of this huge information and an even

∗Work partially supported by project “Searching for a needle in
mountains of data” (http://www.dbgroup.unimo.it/keymantic/)

Copyright is held by the author/owner(s).
LWDM 2011, March 25, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0608-9/11/03 ...$10.00.

harder formulating the right SPARQL queries to retrieve the re-
quired links. Keyword querying is becoming an attractive alterna-
tive, since the users typically do not need to elaborate on the many
technical details of the data structures. Instead they can provide
through a flat list of keywords a general description of the data that
is desired. To be answered over the linked data, a keyword query
first has to be translated into a SPARQL query that describes its
semantics. Unfortunately, the simplicity of keyword queries comes
with a price. Their semantics will have to be discovered. There
has been already a lot of work on answering queries over relational
data [3, 6]. These techniques heavily rely on an a-priori instance-
analysis that scans the whole data instance and constructs an index,
a symbol table or some structure that is later used during run time
to identify the parts of the database in which each keyword appears.
For linked open data, this is not a feasible solution. The linked data
is not a collection of data physically stored in a centralized repos-
itory. Instead, it is a federation of data sources where the links
among the data values is physically distributed across the many
sources. Thus, creation and maintenance of a centralized global
index offline is not an efficient option.

In this work, we describe a KEYRY(from KEYword to queRY),
a tool that translates keyword queries over RDF data with schema
into SPARQL queries. The novelty of the approach is that it does
not assume any knowledge about the data source. It rather extracts
and uses semantics to discover the intended meaning of the key-
words and expresses them in terms of the underlying data struc-
tures, which are then combined together to form a SPARQL query.
By turning keyword queries into SPARQL queries, KEYRY allows
the exploitation of linked open data using a simple and intuitive in-
terface. Furthermore, it offers an excellent tool for the browsing
and discovery of the linked open data. A quick look on the linked
data cloud is enough for someone to realize its size and complex-
ity. In that it is definitely hard to locate some specific piece of data
that actually describes the intended information. With KEYRY, a
user may form a keyword query with the main concepts of the in-
formation the user is looking for. KEYRY analyzes the query and
generates its possible interpretations as SPARQL queries over the
linked data. The user can look at the list of these queries, thus being
guided in identifying the piece of data s/he had initially in mind.

In order to achieve this result, KEYRY uses the semantics provided
by the data source, auxiliary semantic information that is freely
available (i.e., public ontologies and thesauri), a probabilistic Hid-
den Markov Model (HMM) and an adapted notion of authority [5],

KEYRY

Keyword query Parser

HMM Matcher Path Selector Query
Builder

Query history

Data Source

Source metadata

Keyword Matcher
Metadata Repository

Query Generator

Wrapper

Metadata
Extractor

Query
Manager

actors Avatar
movie?

actors → TABLE actor
movie → TABLE movie
Avatar → ATTRIBUTE movie.title

SELECT * FROM movie
JOIN actor ON ...

Sam Worthington,
Zoe Saldana,
Sigourney Weaver, ...

Figure 1: KEYRY functional architecture

to build a ranked list of the possible interpretations. In practice,
the tool only computes the top-k most prominent interpretations
and not the whole answer space. One of the innovative features
of KEYRY is the fact that the keywords in a query are not seen
as independent entities. During the discovery of the data source
structures that serve as potential candidates for describing the in-
tended semantics of a keyword, the mapping of adjacent keywords
to other data source structures are taken into consideration. This
leads to more meaningful interpretations and, at the same time, sig-
nificantly reduces the search space. KEYRY is based on the de-
sign principles of Keymantic [1, 2], but its novelty lies in its HMM
computational mechanism to provide a set of SPARQL candidate
queries. Furthermore, while Keymantic is targeted to strictly rela-
tional data, KEYRY is specially designed to handle RDF, OWL and
XML data.

2. KEYRY OVERVIEW
Figure 1 provides the general architecture of KEYRY. When a key-
word query is issued, KEYRY first finds the structures that contain
these keywords. A keyword in a query may in principle be found in
any data source element (i.e., as the name of some data structure or
a value in its respective domains). This gives rise to a large number
of possible configurations (i.e., combinations of each keyword in
a query with a data source element). Since no knowledge of the
actual linked data values is assumed a-priori existing , selecting the
best top-k configurations is a challenging task. Let us suppose that a
user is posing the query “movie Avatar actors" over the Linked
Movie Database1. The keywords in the query may be associated to
different structures/data values, representing in that way different
semantics of the intended meaning of the user query. For example,
the user might be looking for the actors acting in the movie with
title Avatar, and, consequently, the keywords movie and actors

could be respectively mapped into the OWL classes movie and
actor while Avatar could be a value of the property title of
the class movie. Other semantic interpretations are also possible,
e.g. Avatar could denote an actor, a character, or something else.

The Keyword Matcher is the component in charge for computing
the top-k best matches of the keywords to the data. It employs a first
order HMM that takes into account both the likelihood of mapping
of keywords into data source structures considered in isolation and
as the whole sequence of keywords. In this way, the assignment of
a keyword to a data element may increase or decrease the likelihood
that another keyword corresponds to some data element.

1http://www.linkedmdb.org/, a project that aims at publishing an
open semantic web database for movies, including a large number
of interlinks to several datasets on the open data cloud and refer-
ences to related webpages.

In our approach, the HMM states represent data source elements
while the observations describe the keywords in a query. The HMM
parameters are initialized by exploiting the semantic information
collected in the Metadata Repository including metadata about data
sources structures and the history of the previous user queries. By
applying the Viterbi algorithm [4] to the HMM, we find the state
sequence (i.e. the data source elements) that more likely represents
the intended meaning of the user query. This is achieved through an
iterative process that computes, for each two consecutive elements
in the observation sequence and for each state Si, the most proba-
ble state Sj following Si. The best solution is the path joining the
state per observation having the highest sum of scores associated to
the transition. The score definition takes into account the previous
state score, the probability associated to the transition from the pre-
vious state to the current state, and the probability that the keyword
under evaluation is one of the emissions associated to the state in
exam. We extended the Viterbi algorithm by calculating the top-k
solutions instead of the best one to reduce the number of generated
queries. In our approach transition probabilities variate in time. At
each step, the probability values are updated following two crite-
ria: to force the association of some keywords to specific states
(this happens if the state refers to structural data source elements
and the similarity measure with the user keyword is greater than
a predetermined threshold) and to prevent matching two keywords
into the same data source element (to avoid associations of multiple
values to the same data source elements, which is not possible due
to the atomicity of the attribute values in a data source).

Once the matches have been identified, the possible paths joining
them are computed. Different paths correspond to different inter-
pretations. For instance, the configuration in which the keywords
movie and actor are mapped into the classes movie and actor,
respectively, and the keyword Avatar to the property title of
the class movie may represent the actors that acted in the movie
Avatar, or the movies where acted actors of the movie Avatar, etc.,
depending on the path selected and the classes involved. The path
computation is the main task of the Query Generator module. Dif-
ferent strategies have been proposed in the literature to select the
most prominent one, or to provide an internal ranking based on dif-
ferent criteria, such as the length of the paths. In KEYRY, we pro-
pose two criteria: one based on the shortest path, the second is an
adaptation of the HITS algorithm [5] which classifies the relevance
of the data structures involved in a path.

REFERENCES
[1] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and Y. Velegrakis.

Keyword Search over Relational Databases: a Metadata Approach. In
Proc. of SIGMOD 2011, Athens, Greece, June 12-16. ACM, 2011.

[2] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. T. Lado, and
Y. Velegrakis. Keymantic: Semantic Keyword-based Searching in Data
Integration systems. PVLDB, 3(2):1637–1640, 2010.

[3] S. Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing search with
structure. IEEE Data Eng. Bull., 33(1):3–24, 2010.

[4] J. Forney, G.D. The Viterbi algorithm. Proceedings of the IEEE,
61(3):268 – 278, 1973.

[5] L. Li, Y. Shang, H. Shi, and W. Zhang. Performance evaluation of
hits-based algorithms. In Communications, Internet, and Information
Technology, pages 171–176. IASTED/ACTA Press, 2002.

[6] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Synthe-
sis Lectures on Data Management. Morgan & Claypool Pub., 2010.

