Information Systems 55 (2016) 1-19

Contents lists available at ScienceDirect =
Information
Systems
Information Systems S
E1LSEVIER journal homepage: www.elsevier.com/locate/infosys s

Combining user and database perspective for solving keyword @CwssMark
queries over relational databases

Sonia Bergamaschi?, Francesco Guerra**, Matteo Interlandi®,
Raquel Trillo-Lado ¢, Yannis Velegrakis ¢

2 DIEF - University of Modena and Reggio Emilia, Italy

Y UCLA - University of California, Los Angeles, USA

€ DIIS - University of Zaragoza, Spain
94 DISI - University of Trento, Italy

ARTICLE INFO

Article history:

Received 15 June 2014

Received in revised form

18 July 2015

Accepted 21 July 2015
Recommended by: Martin Theobald
Available online 30 July 2015

Keywords:

Keyword search over relational databases
Hidden Markov Models

Dempster-Shafer Theory

Machine learning

ABSTRACT

Over the last decade, keyword search over relational data has attracted considerable
attention. A possible approach to face this issue is to transform keyword queries into one
or more SQL queries to be executed by the relational DBMS. Finding these queries is a
challenging task since the information they represent may be modeled across different
tables and attributes. This means that it is needed to identify not only the schema
elements where the data of interest is stored, but also to find out how these elements are
interconnected. All the approaches that have been proposed so far provide a monolithic
solution. In this work, we, instead, divide the problem into three steps: the first one,
driven by the user's point of view, takes into account what the user has in mind when
formulating keyword queries, the second one, driven by the database perspective,
considers how the data is represented in the database schema. Finally, the third step
combines these two processes. We present the theory behind our approach, and its
implementation into a system called QUEST (QUEry generator for STructured sources),
which has been deeply tested to show the efficiency and effectiveness of our approach.
Furthermore, we report on the outcomes of a number of experimental results that we
have conducted.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Besides, web search engines index the content of these
sources (the so-called hidden web) through the results of

Keyword search has become the de-facto standard for
searching on the web. Structured data sources contain a vast
amount of information that is significant to be available for
querying. Typically, query interfaces consist of web forms
that allow predefined queries to be posed on their contents.

* Corresponding author.
E-mail addresses: sonia.bergamaschi@unimore.it (S. Bergamaschi),
francesco.guerra@unimore.it (F. Guerra),
minterlandi@cs.ucla.edu (M. Interlandi),
raqueltl@unizar.es (R. Trillo-Lado), velgias@disi.unitn.eu (Y. Velegrakis).

http://dx.doi.org/10.1016/].is.2015.07.005
0306-4379/© 2015 Elsevier Ltd. All rights reserved.

these web form queries, seen as free text. Apart from the fact
that this restricts the kind of data that can be searched, the
great deal of semantic information provided by the structure
of the data, e.g., the schema, is basically lost. This gave rise to
a special interest in supporting keyword search over struc-
tured databases [1] in ways that are as effective as those
offered on text data and at the same time exploit as much as
possible the structure of the data that databases provide.
Many approaches exploit full-text search functionalities
natively implemented in the DBMS, such as the contains
function in SQL server and the match-against function in
MySQL, to discover the attributes of the database containing

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.07.005
http://dx.doi.org/10.1016/j.is.2015.07.005
http://dx.doi.org/10.1016/j.is.2015.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.005&domain=pdf
mailto:sonia.bergamaschi@unimore.it
mailto:francesco.guerra@unimore.it
mailto:minterlandi@cs.ucla.edu
mailto:raqueltl@unizar.es
mailto:velgias@disi.unitn.eu
http://dx.doi.org/10.1016/j.is.2015.07.005

2 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

the query keywords at run-time. Then, they construct the
answer set by combining tuples containing different query
keywords and selecting those combinations considered most
likely to be what users were looking for [2-12]. All these
approaches are typically heuristic-based, without a clear
specification of the steps required to answer the keyword
query. In this work, we advocate that there is a need for a
more principled approach to keyword searching on struc-
tured data; in particular, we believe that keyword search on
structured sources requires three fundamental steps. Existing
works consist of either a monolithic end-to-end solution that
provides no clear distinction of these three steps, or are
focused on only some of them, considering some straightfor-
ward implementation of the remaining.

The three fundamental steps we consider are first to match
the keywords to the database structures, then to discover
ways these matched structures can be combined, and finally
to select the best matches and combinations such that the
identified database structures represent what the user had in
mind to discover when formulating the keyword query. The
first step is focused on trying to capture the meaning of the
keywords in the query as they are understood by the user, and
express them in terms of database terms, i.e., the metadata
structures of the databases. In some sense, it provides the user
perspective of the keyword query and it does so by providing a
mapping of the keywords into database terms. This step is
referred to as the forward analysis step since it starts from the
keywords and moves towards the database. The second step
tries to capture the meaning of the keywords as they can be
understood from the point of view of the data engineers who
designed that database organization, and express them in
semantically coherent units of database structures containing
the images of the keywords specified by the first step. So, in
some sense, it provides the database perspective of the key-
word query and it does so by providing the relationships
among the images of the keywords. This task is referred to as
the backward analysis step since it starts from the database
structures and moves towards the query keywords through
their images. The third step provides a ranking of the coherent
units of database structures that the second step produced
after selecting those that are more promising, i.e., those whose
semantics more likely express what the user had in mind
while was formulating the keyword query.

In our previous works we have studied different aspects
of the keyword search problem over relational databases.
The KEYMANTIC [13,14] system was focused on the first
step. It provided a solution based on a bipartite graph
matching model where user keywords were matched to
database schema elements by using an extension of the
Hungarian algorithm. KEYMANTIC is one of the first solu-
tions that deals with the problem of querying structural
databases through keywords when there is no prior access
to the database content to build any indexes, thus, relying
on semantic information of the database meta-data. This
feature of KEYMANTIC makes it especially appropriate for
keyword-based search on federated database systems and
for exploring data sources in the hidden web. KEYRY [15,16]
extended KEYMANTIC by providing a probabilistic frame-
work, based on a HMM, to match keywords into database
schema elements. Both works deal with the first step of the
process described previously, i.e., the user perspective step.

Our experience with these systems made clear that this was
not enough for a complete solution. These systems were the
motivation for the principled, holistic and unified frame-
work presented in this work.

The main contributions of the current paper are the
following: (i) we introduce a principled 3-step model for the
keyword search problem over structured databases; (ii) we
develop two different implementations of the first step, one
that exploits heuristic rules and one that is based on machine
learning techniques. Both aim at finding the appropriate
Hidden Markov Model specification to generate the right
mapping of the query keywords into database structures;
(iii) we define an implementation of the second step based
on Steiner Tree discovery which exploits a mutual information-
based distance as edge weight and which works at the schema
level instead of the instance level; (iv) we provide a probabil-
istic framework founded on the Dempster Shafer Theory that is
able to combine the first two steps and modalities in a way that
permits the system to promptly adapt to different working
conditions by selecting the best combination among them;
(v) we implement all the above in a system called QUEST
(QUEry generator for STructured sources) [17] and provide the
details of its implementation; and finally (vi) we perform an
extensive set of experiments that offer a deep understanding of
the whole process, its effectiveness and efficiency.

The remainder of the paper is as follows. First, the prin-
cipled 3-step approach is introduced and our proposed frame-
work is formally defined in Section 2. The implementation of
each of the three steps in our developed QUEST prototype
follows in Section 3. The relationship of our framework with
the related works alongside our own previous works on the
topic is explained in Section 4. Finally, the results of our
extensive experimental evaluation are discussed in Section 5.

2. The three-step framework

As a data model for the structured database we assume
the relational model, however the framework can be easily
extended to other structured models as well.

We assume an infinite set A of attribute names, R of
relation names, and V of value domains. A tuple is a finite
set of attribute name-value pairs (A;:vq,Az: Vs, ..., An: Vn)
where A; € A, v; e V; with Vi eV, for i=1...n, and A; # A if
i # j. The schema of the tuple is the (A1:V1,A3: V>, ..., An: Vy)
and its arity is the number n. The domain V; is referred to as
the domain of the attribute A; and will be denoted as
Dom(A;), for i=1...n. A relation instance is a finite set of
tuples, all with the same schema. The schema of the relation
instance is the common schema of its tuples and its
cardinality the number of tuples it consists of. A relation is
a pair (R, Ig), where R e R, referred to as the relation name,
and Iy is a relation instance. The schema of a relation (R, Ig)
is the schema of its relation instance, and will be denoted as
R(A1:V1,...,An: V), where the (A{:Vq,...,A;:Vy) is the
schema of the relation instance Iz. In what follows, when-
ever there is no risk of confusion, the name R will be used to
refer to the whole relation (R, Ig). Furthermore, the indica-
tion of the domains will be omitted leading to the simpli-
fied expression of the relation schema as R(A1,Ay, ...,An).
Finally, the notation |R| will denote the arity of the relation
R and the |Ig| the cardinality of its relation instance [18].

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 3

Ranked

Keyword Forward Analysis Configurations
Query Step

Backward Analysis
Step Step

Ranked
Interpretations

top-k Selection

top-k
Interpretations

Explanations

Translation

Relational
Data Store

Fig. 1. Process steps for answering a keyword query over a relational database.

A database is a set of relations. The schema and instance
of the database is the set of schemas and instances,
respectively, of its relations. The terminology of a database
is the set consisting of the names of its relations, their
attributes and the domains of these attributes. In other
words the terminology of a database D is the set
TD={t\§|R(A1,A2,...,An)EDA (f=R\/f=Ai\/t= Dom
(A)) A 1<i<n}). The members of the terminology are
referred to as database terms. The terminology of a
database D has Z*ZL,D:' ,arity(Ry)+|D| elements. Note that
the model assumes that every attribute has its own
domain. This, however, does not mean that the domains
have to be disjoint. Two domains may even have the same
content. So, such an assumption does not restrict the
model, however, it offers a great flexibility in the materi-
alization of the model in a real system.

A keyword query q is an ordered list of keywords (k1, ks,
..., km). It is important to note that a keyword does not always
mean a single word. A keyword may be a combination of
words that together form a unit and should be treated as such,
like for instance “United States” or “Barack Obama”. Two or
more words are considered as one keyword if they appear
together as a value in one of the domains V defined earlier. For
instance, the term United States is one of the values of the
domain Countries, so when the two words are given together
by the user, the tokenizer will consider them as one keyword.

2.1. Mapping keywords into database structures

The first step in answering a keyword query over a
relational database is to understand the meaning of the
keywords used in it. Each keyword describes some character-
istic property of the elements of interest that the user has in
mind. This property has to be expressed in terms of char-
acteristics as they are modeled in the database through the
database structures. Thus, understanding what each keyword
means requires each keyword to be mapped into the database
terminology so that it can be expressed with some database
term. Such a mapping is referred to as a configuration.

Definition 2.1. A configuration c of a keyword query q on a
database D is an injective function from g to the terminol-
ogy Tp, i.e., c|q— Tp. The image of a keyword k through the
configuration c is a database term t for which c(k)=t.

The configuration has been defined as a function, because
we have made the natural assumption first that each keyword is
present in the query for a reason, ie, no redundant or

unjustified keywords, and second, that there is no intentional
ambiguity, i.e., a keyword cannot serve more than one meaning
in a query. For every meaning that the user has in mind, it is
assumed that a different keyword has been selected and
included in the query to represent it. The reason that the
function is considered injective, on the other hand, is two-fold.
First, we assume no over-specification, i.e., no two keywords are
referring to the exact same thing. Second, we need to avoid the
case of self-joins because this may lead to an infinite number of
cases to be considered. Mapping of two keywords on the same
term with a cyclic join path, may generate interpretations in
which the path is considered arbitrary number of times, leading
to an infinite number of possible interpretations. This choice is
in line with similar mapping situations like schema mapping
[19,20] where the chase technique used there generates infinite
mappings if self joins or cycles exist.

A keyword query of m keywords, has |Tp|!/(|Tp|—m)!
possible configurations but not all of them are equally likely
to represent the meaning that the user had in mind while
formulating the keyword query. Determining the possible
configurations and ranking them from the most likely to the
less likely constitutes the first (forward analysis) step of the
process of answering the keyword query (see Fig. 1).

The forward analysis step needs to take into considera-
tion not only the actual keywords used in the query, but also
their relative positions and try to guess their meaning by
exploiting this information. There are studies that show that
queries generated by users are typically having related key-
words close to each other [21] and that the order follows
some logical sequence. The forward analysis step is consid-
ered to provide the user perspective because it tries to model
what the user had in mind with the individual keywords.

Example 2.1. Consider a university database with informa-
tion on personnel, projects and research activities, a fragment
of which is illustrated in Fig. 2. Assume that a user poses the
query Vokram IT. Both vokram and IT could represent any
database structure, however, it is more likely for the former to
be the name of a person. Similarly, the latter may be the name
of a university, but most likely it is the name of a country.
Thus, the configuration

A: {“Vokram” — Dom(People.Name), “IT”
— Dom(University.Country)}

is more likely to be the one the user was thinking compared
to the

B: {“Vokram” — Dom(People.Name), “1T”
— Dom(University.Name)}

4 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

PEOPLE AFFILIATED
Id | Name Phone Country | Email id_prs | id_dpt | Year
pl | Vokram |[4631234 | USA vkm@aaa.bb | | pl x123 | 2009
p2 | Reniets 6987654 | IT rts@bbb.cc P2 cs34 |2012
p3 | Refahs D. | 1937842 | SP ds@cce.dd p3 cs34 12010
UNIVERSITY
DEPARTMENT Name | City Country
id Name | Address University | Director MIT | Cambridge | USA
x123 | CS 25 Blicker SU pl22
- UR Rome IT
cs34 | EE 15 Tribeca UM p54 UTN T Tronto T
ee67 | ME 5 West Ocean | UTN p432 SU Stanford USA
PARTICIPATION
MEMBER OF PROJECT Project | University
Person | Projct | Date id | Name Year | Topic Rl TR
pl Rx1 5/4/2012 Rx1 [Searchit! |2011 | DB&IR Rl UTN
p2 Rx1 9/3/2012 Rtl | Analyzeit! | 2012 | DB&ML Rl UM

Fig. 2. A fragment of a database schema with its data.

Obviously, in case of adoption of full-text indexes the number
of possible configurations is reduced to the ones allowed by
the database instance. In the case in Fig. 2, “Vokram” can be
only the name of a person. “IT” can be a value associated to
the country attribute or to the People or University tables.

2.2. Combining the identified database structures

The configurations are semantically ambiguous. They
may describe the meaning of the keywords in database
terms, but they do not explain how the terms are connected
to form a coherent semantic unit that gives a semantic
meaning to the whole keyword query. This connection has
to be based on the way the images of the query keywords
(as they are expressed through the configurations) are
connected in the database.

There are typically two main ways database terms are
connected. One is the structure, i.e., the way the data
administrator has chosen to model the data in the reposi-
tory. For instance, two attributes are placed in the same
relation when the data designer believes that they describe
two different properties of the concept that the relation is
about, and consequently they should be connected. The
other way is the use of schema constraints, in particular
referential constraints like key/foreign key relationships.
These relationships describe ways in which structures in
different relations can be associated by forming join paths.
We refer to the ways that the database terms that serve as
images of the query keywords can be associate as inter-
pretations because they do not simply indicate what each
keyword represents, but they also provide an interpretation
of the whole keyword query in terms of the database
structures and semantic constraints.

To more formally define interpretations we introduce
the notion of the database graph.

Definition 2.2. A database graph G=(V,E) is a graph
structure where each node represents a database term
(i.e., a relation, an attribute or a domain of an attribute).
There is an edge between each attribute of a relation and its
domain, and between each attribute and the table (relation)
it belongs. Furthermore, there is an edge between the nodes

that model the domains of two attributes that have an
inclusion dependency (e.g., a key/foreign key relationship).

For simplicity, we assume no primary or foreign key is
spanning multiple attributes. Nevertheless, this is not
limiting QUEST since a surrogate key can always be created
if a multi-attribute primary/foreign key exists.

Example 2.2. Fig. 3 illustrates the database graph of the
database instance of Fig. 2. Nodes of the form Dom(A)
represent the domain of attribute A and nodes in bold
represent relations. The dotted lines represent referential
constraints and the solid lines attribute-relation or
attribute-domain relationships.

Using the database graph, the interpretations can be
defined as sub-graphs of it.

Definition 2.3. Given a configuration c of a keyword query
q on a database D, an interpretation (V°,E%) is the con-
nected component sub-graph of G composed by every
node modeling the image c(k), of a keyword k in the query
g, and every other node or edge that is part of a path
connecting two such image nodes, in a way that between
any two image nodes there is one and only one path.

Note that since there may be multiple join paths con-
necting two attributes in the database, it is natural that
given a configuration there may be more than one inter-
pretation. Each interpretation describes some different
semantics for the keyword query that the user provided.

Example 2.3. Consider again the configuration

”

A: {“Vokram” - Dom(People.Name), “IT
— Dom(University.Country)}

of Example 2.1. Looking at the database graph of Fig. 3 different
interpretations can be found. One may be that vokram is the
director of a department of an Italian university, specified by a
subgraph that connects the nodes' Dom(People.Name) and

T Although in the graph we use only the expression Dom(A) as a label
on the node modeling the domain of the attribute A of a relation R, in
order to avoid confusion in the text we instead write Dom(R.A).

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 5

1
[}
1
[}
1
1
1
1
1
[}
1

Fig. 3. The database graph corresponding to Fig. 2.

Dom(University.Country) through the Departvent relation. The
specific interpretation is illustrated at the top of Fig. 4. Let it be
referred to as interpretation [A.1]. Another interpretation, let it
be referred to as [A.2] is the one that assumes that Vokram is
the name of a person that is a member of a project in which an
Italian university participates. This interpretation connects the
nodes Dom(People. Name) and Dom(University.Country)
through the relations MemBerOF, Project and Parmicipation as the
middle graph in Fig. 4 illustrates.
For what concerns the configuration

”

B: {“Vokram”—Dom(People.Name), “IT

— Dom(University.Name)}

one possible interpretation is that vokram is the director
of a department of a university called T, illustrated under
the name [B.1] in Fig. 4.

Since this second step of providing some semantic
interpretation of the configuration is driven by the way
the data is structured in the database, it is referred to as
the backward analysis step. Intuitively, it provides the
“database perspective” on what keywords that the user
used in the query may mean.

Of course not all the interpretations are equally likely to
represent what the user had in mind, so they should be
ranked according to the likelihood that they do so. In order to
estimate this likelihood, different methods can be used. For

instance, a ranking can favor interpretations with the shorter
paths between nodes, or with paths passing through a specific
central node as happens in star schemas of warehouses.

Moreover, there is a second dimension to take into
account in ranking the interpretations: the existence in the
database instance of tuples corresponding to the selected
interpretation. Not all the interpretations have the same
information power and some of them can produce empty
results once they are translated in SQL and executed in the
DBMS. Estimating if an interpretation could provide an
empty result is useful to optimize the process and make it
more responsive towards the user's needs.

Example 2.4. One of the heuristic rules commonly adopted
for ranking the interpretations is based on the number of
edges involved. Interpretations with more edges can include
extra edges which are no justified by any term in the user
query and relate things that are semantically far. Among the
two interpretations [A.1] and [A.2] mentioned in Example 2.3,
[A.2] has more edges. Although it is possible for [A.2] to
actually represent the semantics that the user is looking for
with the provided keyword query, it is less likely since [A.2]
involves elements that are semantically further from the point
of view of the database designer.

Moreover, when evaluated against the database, not all
the interpretations correspond to instances which are really
available. For instance, this is the case of [A.1] (i.e. the

6 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

[A1]

People

Department

Dom(University)
\
\
\\

.

4

———

Dom(Name)
Dom(Name)
)

[B1]

People

Dom(Name)

4

Dom(University)
A
\\\

e

Fig. 4. Interpretation examples of the configurations A and B of Example 2.1.

person “Vokram” is not the Director of a Department of a
University from “IT”).

2.3. Producing the explanations

Since the data is stored in a relational data store, to
retrieve the elements of interest it is needed to produce a
number of SQL queries. We refer to these queries as
explanations since they are actually describing a set of data
to be retrieved as a response to the keyword query provided
by the user, and in some sense “explain” what the query
could actually have meant. How the explanations are gener-
ated is an issue of the specific implementation. However,
what is important is that the final sql query respects the
configuration, i.e., ensures that the images of the keywords
as database terms are present in the query and these terms
are associated in the way that the interpretation specifies.

Naturally, not all the explanations are equally likely to
represent the intention that the user had in mind when
formulating the query. The likelihood that an explanation
is actually representing such an intention is based on the
degree that both the configuration and the interpretation
are believed to represent what the user had in mind. This
means that to create a ranked list of the most promising

candidate explanations, one needs first to create a ranked
list of interpretations that takes into consideration not
only the ranking of the interpretations produced by the
backward analysis step, but also the ranking of the con-
figurations from which they were derived, as produced by
the forward analysis step. It may be the case for instance,
that an interpretation ranks very high in the list produced
by the second step, but the configuration from which the
interpretation was derived is very low in the rank of
configurations produced by the first step.

Example 2.5. Consider again the case of the keyword
query vokram IT, the configurations A and B mentioned
in Example 2.1 and the three interpretations [A.1], [A.2]
and [B.1] described in Example 2.4 and illustrated in Fig. 4.
[A1] is preferable compared to [A.2], according to the
usual heuristic rule, even if it does not correspond to any
tuple in the database as already mentioned. However,
between [A.1] and [B.1] the decision is not that clear since
the graphs of the two interpretations are both of the same
size, as it can be seen in Fig. 4. It was mentioned
in Example 2.1, however, that the configuration A, com-
pared to B, is more likely to represent what the user had in
mind, which makes an explanation derived by [A.1] more

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 7

a-priori
(Hidden Markov Model)

Keyword Dempster Shafer

Configurations

Ranked
Interpretations

Weighted Dempster Shafer

Query Theory

Feedback-based
(Hidden Markov Model)

Forward Analysis Step

Steiner Tree Theory

lop-k
Meta-data Interpretations

~

>

Explanations Interpretation2SQL

Relational
Data Store

Fig. 5. The keyword search process in QUEST.

favorable than one derived by [B.1]. Whether an explana-
tion derived by [B.1] is preferred over one derived by [A.2],
depends on whether the mappings of the keywords into
the database structures (i.e., the configuration) are con-
sidered more important than the way these structures are
related to each other (i.e., the interpretation).

3. Framework implementation

We have materialized the previously described frame-
work into a system called QUEST. The system can be used
as an add-on that operates on top of a database system.
Before operating, QUEST needs to know some meta-data
information about the database. The meta-data informa-
tion consists of the database terms alongside the referen-
tial constraints. This is done into a pre-processing step by
accessing the database catalog tables. It also needs access
to the full-text indexes over all the database attributes. Of
course, there are cases in which such access is not possible.
One such case is the one in which the data source is part of
an integration system of independent sources. Typically
these sources do not allow unrestricted full access to their
content but only access to specific parts through a con-
trolled interface. In these cases some partial information
can be obtained from the user or by analyzing the interface
that the database provides.

The overall framework implementation process is illu-
strated in Fig. 5. As it can be seen, for the forward analysis
there are two different implementations that run on parallel
and at the end their results are merged into one set of
configurations. The configurations are provided to the back-
ward step implementation, which takes one at a time and
produces a set of possible interpretations. All the generated
interpretations are then ranked according to their selection
criteria and the ranked list is provided to the ranking
module. The latter combines the ranked interpretations with
the ranked configurations to produce a new ranked set of
interpretations and select the top k. At the end, each one in
the top-k is translated into a SQL query.

Algorithm 1. QUEST implementation of the keyword
query answering.

Input: Keyword query: q

Number of top results to consider: k

Output: Set of SQL queries Qsy

QUEST()

(1) Capr < FW — HMMA—PRIORI(q, k)

(2) Cpipack < FW — HMMFEEDBACK(q, k)

3) TopC«—COMBINERDST(q, k, Capr, Cpapack> CONf gpr» CONS fgacic)
4) @

5) foreach ce TopC

6) I—1UBW —ST(q, ¢)

7) Topl < RANKsr(I)

8) Topl «—CoMBINERDST(q, k, TopC, Topl, Confro,c, Confryy)
) Qsq < CONFIGURATIONS2SQL(Topl)

0) return Qy

9

(
(
(
(
(
(
(
(1

3.1. Discovering configurations: the forward analysis
implementation

A number of different techniques can be used to generate
the possible mappings of the keywords to database terms, i.
e., the configurations. If full access to the database content is
available in advance and full-text search functions are
supported, they can be exploited [2] to identify the appear-
ance of the keywords in the content, and from there, the
database structures these appearances belong. However, in
many cases, this is not enough, since the same keywords can
be found in several database relations, thus requiring the
adoption of disambiguation techniques. Moreover, especially
on the web, access to the data is not always available. Data
sources expose typically a part of their schema that can be
queried, either through wrappers or through web form
interfaces. For these cases, semantic and heuristic techniques
can be exploited. Existing works have shown to produce
interesting results [13].

Since the process is mainly a guess on what the keywords
in the query actually mean, each configuration proposed
should be coming with some degree of confidence. In our
own implementation, we use a First-Order Hidden Markov
Model (HMM), similar to the one we presented in a previous
work [15]. This approach has the advantage of using a solid
and effective probabilistic framework and works as follows.

A HMM models a stochastic process that is not observable
directly (it is hidden), but it can be observed indirectly
through the observable symbols produced by another sto-
chastic process. The model is composed of a finite number N
of states. Assuming a time-discrete model, at each time step a
new state is entered based on a transition probability distribu-
tion, and an observation is produced according to an emission
probability distribution that depends on the current state,
where both these distributions are time-independent. More-
over, the process starts from an initial state based on an initial
state probability distribution. More formally, the First-Order
HMM consists of: (i) a set os states S = {s;}, 1 <i < N; (ii) a set

8 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

of observation symbols V = {v;}, 1 <j<M,; (iii) a transition
probability distribution A= {a;}, 1<i<N, 1<j <N where

Z aij:l;

0<j<N

A =P(q; 1 =Sjlq: =i and

(iv) an emission probability distribution B = {b;(m)}, 1 <i <N,
1 <m <M where

bi(m)=P(0; =V|q, =s;) and

> bim=1

O<m<M

and (v) an initial state probability distribution 17 = {z;},
1 <i<N where

mi=P(@=s) and > m=1

O0<i<N

In our context, the keywords inserted by the user are the
observable part of the process, while the correspondent
database terms are the unknown variables that have to be
inferred. For this reason, we model the keywords as observa-
tions and each term in the database vocabulary as a state.

The use of HMM requires the specification of its transition,
emission and initial state probabilities. The challenging ques-
tion is how these probabilities can be computed. We have
developed two operating modes for the forward analysis step,
each one has its own method for the computation of these
distributions. These modes are based on techniques we have
previously developed and implemented [15,16] for computing
the transition probability and the initial state distributions.
The first mode, is referred to as the “feedback-based”. In that
mode the system learns these probabilities by means of an
Expectation-Maximization (E-M) on-line training algorithm
[22] applied to a dataset composed of previous searches
validated by the user. The second mode is referred to as the
“a priori” mode. In that mode, the transition probabilities are
defined by exploiting semantics collected from the data source
metadata independently of the feedback from the users. They
are computed by using heuristic rules that take into account
the semantic relationships that exist among the database
terms. The goal of these rules is to foster the transition
between database terms belonging to the same table and
belonging to tables connected through foreign keys. This
means that in the A matrix the weights are established so
that the values associated to:

® database terms belonging to the same table assume the
highest values;

® database terms belonging to tables connected via
foreign keys assume intermediate values;

® database terms belonging to table not directly con-
nected assume the lowest values.

In all the above cases, the values are further differentiated on
the basis of which kinds of database terms they are repre-
senting. In particular, transitions between states representing
schema elements and their respective domains are assigned
higher values than those assigned to the transitions between
states associated to schema elements, states associated to
attribute domains and finally, states associated to schema
elements and domain attributes of not related attributes. The
choice of the actual values are not important as long as they

satisfy the above rules. In all the cases, the values have to be

normalized to add up to one.
The initial state probability is computed by means of an

adaptation of the HITS algorithm [23] that applied to a HMM
retrieves the states with high “authority” scores, i.e., the ones
that contain valuable information concerning the user query,
thus associated with a higher initial state probability. The
above two techniques (details of which can be found in some
previous work of ours [15,16]) are extended and adapted in
the QUEST environment. In particular, for both operating
modes, the emission probabilities are computed on-the-fly,
by analyzing the keyword query with the full-text index-
based search function usually available in today DBMSs. The
emission probability of a specific state is approximated by
means of the scores returned by the full-text search function
applied to all the keywords with respect to the considered
state, and normalized to add to one. We use the calculated
similarity as an estimate for the conditional probability
P(q; = silor = viy) then, using the Bayes theorem, we calcu-
late the emission probability P(o; = vin|q, = S;). If we do not
have a complete access to the database instance, we can
adopt different measures to estimate the emission probabil-
ity, by means of regular expressions and the “Semantic
Distance” as we proposed in [14]. Note that the model is
independent of the similarity measure adopted. Other more
complex measures that take into account external knowl-
edge sources (i.e., public ontologies and thesauri) can be
applied without modifying the model.

Once the HMM parameters have been defined, the result-
ing HMM is used to compute the top-k configurations by
applying the List Viterbi algorithm [16]. The algorithm returns

the ordered list of the K state sequences sz(q’{,q’g,
G, 1<k<K (ie, the database terms) which have the
highest probability of generating the sequence O;= (01,
0, ...,07) (i.e, the user keywords).

Example 3.1. Let us consider a fragment of the database
proposed in Fig. 2, composed only of the tables People and
Department. The HMM (which has been constructed in
advanced as explained previously) contains a state for each
database term, i.e., a state for each attribute and attribute
domain in the tables. If we assume to have access to full-
text indexes, given a set of keywords, we know the
database terms that more likely represent them. This is
the emission probability distribution B. The transition
probability matrix A, built according to one of the two
techniques described above, expresses the probability that
a keyword is assigned to a specific state, i.e., representing
the respective database term for that state, given the
assignment of the preceding keyword in the query. Now,
given for example the keyword query Country IT,
assuming that the first term is associated to the schema
element Country of the table People, the probability to
have the second term “IT” associated to the domain of the
attribute “Country” is higher than any other assignment, if
in matrix A the value associated to the transition between
the states representing the database terms Country and
domain of Country is higher than any other value asso-
ciated to transitions from the “Country” state. The List
Viterbi algorithm takes into account the transition and the
emission probability distributions for returning a list of

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 9

possible state sequences, which are likely to represent the
database terms that can be associated to the user key-
words. In the specific case, the possible database terms
associated to “Country” and “IT”.

3.2. Discovering interpretations: the backward analysis
implementation

Finding how the images of the keywords to the data-
base terms, as they are specified by the configurations, are
connected to each other dictates the way the data has been
modeled in the database. For a relational system, this
would translate into an exploration of the join paths
among their respective tables and selecting those that
most likely represents what the user that formulated the
query had in mind. To do so it is useful to see the database
as a database graph (see Definition 2.2).

Selecting the best join path is a challenging issue.
Between two terms, the most natural selection would be
the join path with the shortest length based on the idea that
the closer two terms are, the higher the likelihood that they
are semantically related. When there are more than two
terms, the way they can be connected is more complex and
the semantics of the shortest path is not so clear. For this
reason, the idea of the Steiner Tree [24] is often adopted:
given an edge-weighted graph G=(V,E) and a subset
Vy <V, find the top-k minimum cost trees containing at
least all the elements of V. For our case, the nodes V; are the
database terms that serve as images of the query keywords
through the configuration. The cost of a Steiner Tree t: (V¢, E¢)
is the sum of the weights of its edges, i.e.,

cost(t) = _ weight(e) 1)

eckE;

where weight(e) is the weight of the edge e e E;

Since the Steiner Tree discovery process is about a
weighted graph, QUEST employs weight(e)=1 for “attri-
bute-domain of the attribute” edges and “relation-attribute
of the relation” edges, and a mutual-information-based
distance for computing the rest of weights on the edges
(previously used in the context of databases summarization
[6]). This assures to select the most informative join-paths,
i.e., those that are more likely to contain tuples that can
join. A similar measure has been adopted in the context of
database summarization [25]. Consider two attributes A;
and A, that appear in the same Steiner Tree, A; is a primary
key, and A, is a foreign key referencing A;. If I(A;,A,) and
H(A1,A3) are respectively the mutual information and the
entropy, as defined elsewhere [25], the weight of the edge
between them can be defined as the distance function

1(A1,A2)

DA, A)=1—— "2~
A1) =1-Ha 4y

)
To define and apply the distance function, the works by Yang
et al. [25] are considered to define a joint distribution”
between two variables, X4, and X,,, that represent the

2 Joint distribution is a brief form of joint probability distribution
function defined as a probability distribution that gives the probability
that each pair (Xa,, Xa,) falls in a particular range or in a discrete set of
values specified for those variables.

attributes A; and A, respectively. In particular, if A; and A,
belong to different relations, the joint distribution between
Xa, and Xy, is defined by taking into account the full outer
join on the attributes A; and A, as in this way, the distance
function is aware of pairs of the types (value, null) and (null,
value). If A; and A, belong to the same relation, then the joint
distribution is the projection of the relation on {X4, and X, }.

Once this distribution gets computed and the distance
function mentioned above calculated, its value is divided
among the two edges that connect the two attributes
through their common relation and become their respective
weights. In practice, in order to further optimize the execu-
tion time, we are actually using a summary graph [25]
instead of the whole Steiner Tree. The summary graphs are
similar to the graph previously described, but their edges are
meta-edges corresponding to paths of the original graph (in
our case the Steiner Tree) so we do not really have to do this
division of the weights. The fundamental concept, however,
remains the same even in the case of the summary graphs.
Given the set of top-k configurations, the set of interpreta-
tions that the backward analysis step is returning is the
union of all the top-k summary graphs generated for each of
the top-k configurations.

In QUEST we have extended a Steiner Tree discovery
algorithm [24] by making it to work at the schema level
instead of the instance level, and implemented a mechan-
ism to efficiently discard trees whose computation does
not provide any additional results, like for instance, those
that are super-trees of other Steiner Trees already com-
puted. More specifically, Steiner Trees are computed using
an ad-hoc extension of the DPBF algorithm [24]: we
introduce a tree-similarity function to discard, among the
computed partial results, those that are subgraphs of
others. Assume that we denote by S(t) the Steiner nodes
(i.e., non-terminals nodes), and with T(t) the terminal
nodes of tree t, the similarity function simil(t,t’) returns
true if S(t) = S(t') and T(t) = T(t'). The motivation is that the
join-path associated to the Steiner Tree, which is super-
graph of another tree, does not introduce any new infor-
mation concerning how to map the keyword query into
the graph and therefore can be discarded.

Working on graphs modeling the meta-data instead of
the actual tuples in the instance [4,24,26], offers QUEST a
number of advantages. In particular, (i) the graph is typically
smaller and hence the technique is in general more scalable,
(ii) it is less subject to changes than a graph over the
database instance, (iii) it has uniform semantics for edges,
i.e,, primary/foreign key join, and (iv) it can be computed
even in cases where the database instance is not directly
accessible. These advantages allow QUEST to deal with
“critical” real scenarios where the database size gives rise
to graphs with millions of vertices and edges, for which the
problem of finding Steiner Trees is becoming intractable.

Using graphs that model database schemas requires to
address an additional important issue: the case that the
obtained Steiner Tree does not provide any direct result (i.e.,
no actual tuple is returned), but only the specification of a
join-path that could result in an empty set of tuples. This
happens because the configurations discovered in the for-
ward step map keywords into database terms in isolation.
Therefore, there are no guarantees for a configuration to

10 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

correspond to a tuple actually existing in the database
instance. However, the use of the mutual-information-
based approach that we have described previously mini-
mizes the chances that the top-k interpretations that are
selected based on the weights have this problem.

3.3. Ranking combination implementation

There are two points in the framework implementation in
which different ranked results alongside their confidence
score need to be combined into one, and the confidence
scores of the elements in the new ranking list needs to also be
computed. The first point is in the forward analysis step in
which the results of the two different implementations of the
step need to be combined into one. The second is at the point
in which the ranked list of the interpretations computed by
the backward analysis step need to be updated by taking into
consideration the scores of the configurations that produced
these interpretations in the forward analysis step. By updated,
it is not meant simply changing the order but also computed
the new scores for the elements in the list. When this is done,
the top-k elements can then be selected. Although there are
popular algorithms for merging multiple ranking lists into one
[27], the need to also accurately compute the confidence
probabilistic score of the elements in the final list poses some
additional challenges.

We believe that a promising approach for this purpose
is a probabilistic framework and for that we have selected
the Dempster Shafer Theory (DST). The DST [28] is a
generalization of the Bayesian theory of subjective prob-
ability that allows evidences coming from different inde-
pendent sources, under uncertainty conditions, to be
combined. Given a set of elements in which we are
interested, called universe and denoted by U (the so-
called frame of discernment), the idea of DST is to:

1. Obtain a belief function (a. k. a. mass function)
m: P(U)— [0, 1] for each source providing some type of
information. Each belief function m must satisfy the
following properties: (i) m(@) =0, (ii) > . pyyM(E) = 1.
Moreover, m(U) represents the degree of uncertainty
specified for that particular source.

2. Combine the different degrees of belief by means of
Dempster's rule. This rule establishes that given two
mass functions my, m, representing source 1 and 2
respectively, then the aggregation mass functions m; is
computed by the following equations:

SrnE — gME)ME)

mp(@)=0 4)
K= Y mE)myE) (S)
EnNE =0

where K represents the mass associated with conflicting
evidences, i.e., when the intersection is empty.

There have been different proposals to aggregate evi-
dences by considering other methods to hand conflicts
[28]. We have selected the Dempster's rule because it is

well-known and extensively used in practice. Neverthe-
less, the approach can be easily adapted to use other rules.

For the case of combining the results of the a priori and
the feedback based implementations of the forward ana-
lysis step, as universe it is considered the union of the two
respective result sets. Furthermore, the scores of the
elements in the two respective lists are used to approx-
imate a probability distribution function. For doing so they
have to first be normalized and add up to 1. This prob-
ability distribution function is what considered as the
mass function that the DST requires. Finally, there is a
need for deciding which ranking to trust more and which
not. For this, two additional parameters are used that
describe the confidence that is put on each of the two lists.
These are the Confup, and Confiypack, respectively.

The specific values of the latter two parameters may
change as the system is operating, making QUEST a tool easily
adaptable and reacting to changes in its working context. For
example, when QUEST is used to query a new database, little
feedback is available. Thus, the feedback-based mode can
become less reliable than what will be after some long time
querying the data source. Consequently, the parameter Confqp,
is increased in order to allow the system to achieve a better
overall performance. However, as the amount of the available
feedback increases, the parameter Confgpqck is incremented.
This same parameter will on the other hand decrease when
“negative” feedback is obtained and the system will be
reconfigured automatically according to this decrease.

For the case of combining the results of the interpreta-
tions with the configurations of the forward analysis step,
the approach is similar. The scores that have been assigned
to the configurations and interpretations from the forward
and backward analysis step, respectively, are considered
observation values (i.e., evidences) and are used to com-
pute the probability distribution function.

One issue to be taken care here is that the two lists have
heterogeneous contents (one has configurations, the other
interpretations) and some configurations may be orphan, i.e.,
a configuration for which the interpretations has not made it
to the top-k list that the backward analysis step has
produced. For this, before performing the combination, this
orphan configurations are discarded. Other than that, in this
second case one can have two confidence parameters, Conff,
and Confy,, that specify the importance that is to be placed
on the configuration (forward analysis) or the interpretation
(backward analysis), respectively. Giving higher value to the
first will lead towards results covering more disparate tables
or attributes in the database, even if loosely connected (i.e.,
through very long paths). On the other hand, higher con-
fidence value on the backward analysis will lead to strongly
related database terms, i.e., more coherent structures be
returned. The exact values to set is application specific.
Although they can get any values, a good practice would
be to assign values that add up to 1. In that way, knowing the
value of one of the parameters, which will be between 0 and
1, the other can be computed.

Example 3.2. Applying the forward and the backward
analysis implementations of QUEST on the running example
keyword query vokram IT leads to the scores indicated
in Table 1. Each line corresponds to one of the three

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 11

interpretations [A.1], [A.2] and [B.1] of Example 2.3. The first
column indicates the scores for the respective configurations,
i.e,, the A for the [A1] and [A.2], and the B for the [B.1], as
they are resulting from the forward analysis. The second
column are the scores of the three interpretations resulting
from the backward analysis. The next three columns indicate
the scores of each interpretation depending on the relation-
ship of the value of the confidence parameters. The number
that is shown in parenthesis simply indicates the ranked
position of the respective number among the three. The goal
here is not to explain in details how these numbers were
created, but simply to illustrate the effect that the values of
the confidence parameters Confs, and Conf,, can have to the
final list that the system will return.

3.4. Generating explanations: the translation

One approach for generating the explanations from an
interpretation is to consider all the tables for which there is
an attribute or attribute domain database term in the
interpretation, or the table itself appears as a database term
in the interpretation. All these tables form part of the where
clause. Furthermore, for every association between the
database terms included in the configuration, the join con-
ditions among their respective tables are added in the where
clause. The challenging question is what to be placed in the
select clause, since in contrast to SQL or other structured
form of queries, keyword queries do not specify neither the
objects to be retrieved nor the form or the attributes they
should have. In the absence of such information, QUEST is
returning a complete picture of the involved structures, i.e.,
the set of all the attributes related to the relation database
terms involved in the interpretation. In other words, for
QUEST an explanation, i.e., the generated final SQL query, is
defined as follows:

Definition 3.1. An explanation e of an interpretation
(V3,E%) derived by a configuration c of a keyword query g
is an SQL query in the form
select aq, ay, ..., a,
from R join R, on J; join ...join R, on J,
where A} =k; and A, =k, and ...and A, = km

formulated by adding: (i) a condition A=k in the where
clause for every node in V° that corresponds to an attribute
domain Dom(A) which is the image c(k) of the keyword k;
(ii) a join condition J:A=A" in the from clause for every
edge between two nodes Dom(A) and Dom(A”); and (iii) a
reference to the attribute a of relation R in the select clause
if a node representing R is in V5,

Table 1
Ranking scores for the running example results.

The above definition is implemented in the Inter-
pretation2SQL module in Fig. 5 illustration.

Keyword queries are very vague. They are flat lists with
no explicit relationships between the keywords, thus many
different interpretations are possible [29]. The whole frame-
work presented here is based on the hidden assumption
that the semantics the user had in mind when formulating
the query are expressible as an SPJ query. However, SPJ
queries form a large class of queries that can fulfill the
requirements of the majority or real life applications, some-
thing that has already been recognized [30]. Almost all the
keyword query answering techniques on structured data-
bases follow a similar assumption [2-12]. Clearly, there may
be applications that require more complex queries that
cannot be covered by our approach, e.g., self-joins. These
are focused on specific applications, and can be handled on
a case-by-case basis. For instance, the self-joins can be
implemented by considering multiple copies of the same
database term modeling the table for which a self join may
be applied. As an example, the graph of Fig. 3 could have
more than one nodes representing the table Person, and
its included attributes to allow self-joins on that table to be
considered as explanations produced by the system.

4. Related work

Over the last decade, a great amount of approaches to
allow users to access structured data by means of keyword
queries has been proposed. These proposals can be classi-
fied into two main categories [1]|: schema-based (a.k.a.
relation-based) and graph-based (a.k.a. tuple-based).

The schema-based approaches model the database to be
queried as a graph where nodes represent relations and
attributes, and edges represent key/foreign-key or member-
ship relationships. In this kind of systems, a keyword query
is typically evaluated in two steps. Firstly, SQL queries are
generated to describe the intended meaning of the user
query in database terms. Moreover, queries are ranked and
evaluated based on their relevance (semantic proximity) to
the assumed user query semantics. Secondly, the most
relevant SQL queries are executed to retrieve tuples from
the database. The main goal here is to optimize the
algorithms used to generate the SQL queries and to select
the right metrics for the evaluation of the tuples retrieved
by these queries. Examples of systems following the
schema-based approach include DISCOVER [2], DBXplorer
[3], SPARK [5], and SQAK [6].

The graph-based approaches model relational databases as
graphs where nodes are tuples and an edge between two
tuples denotes that they are connected by a key foreign-key
constraint. Thus, connected tuples can be extracted directly

Explanation score (rank)

Confy = Confpy,

Confp, < Confy, Confp, > Confy,,

Result Scores of the approaches

Forward (f) Backward (b)
[A1] —5.080 (1) -0.174 (1)
[A.2] —5.080 (1) -0.492 (3)
[B.1] —-9.123 (2) —0.178 (2)

~4.809 (1)
—4.959 (3)
~4.820 (2)

—11.217 (1) ~2.402 (1)
~12.048 (3) ~2.780 (2)
~11.321 (2) — 4596 (3)

12 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

from the data-graph. BANKS [4], BLINKS [31], PRECIS [9], DPBF
[24] and STAR [32] are examples of graph-based systems.
Their main aim is to optimize the computation of specific
structures over the graphs (e.g., Steiner Trees, rooted trees,
etc.) to find the most relevant top-k connected tuples. Their
challenge is to handle the large and complex graphs induced
by the database instance, as it could make the problem hardly
tractable. Furthermore, different interpretations (with differ-
ent structures) that arise due to inherent keyword ambiguities
appear all mixed up in the result sets.

Our QUEST system is a schema-based approach as it
performs the matching of keyword queries into database
structures by means of the forward step, and after that, it
exploits information from the schema and the instances of
the database to generate possible interpretations (called
“candidate networks” in some previous schema-based
approaches), i.e.,, portions of the database schema graph
that includes the keywords in the user query seen as a bag
of words. Nevertheless, by using the HMM, these words are
seen as a sequence, considering their relative positions in
the query and the inter-dependencies between the match-
ings of the keywords to the various database structures.
QUEST also makes use of techniques based on Steiner Trees,
which are generally exploited by graph-based approaches.
In [1,24], Steiner Trees are applied to the instance graph for
identifying the results of a query. However, in the backward
step, QUEST builds a graph of the database schema instead,
and uses Steiner Trees to identify the tables and join paths
needed for the SQL query formulation.

SQL query SUGGestion (SQLSUGG) [33] is currently the
most similar system to QUEST. It implements a schema-
based approach that also uses a probabilistic model based
on entropy to suggest SQL queries efficiently to the users by
means of a friendly interface. The main differences between
SQLSUGG and QUEST are the following ones: (1) in QUEST,
firstly users' keywords are matched to elements of the
database, and, after that, the different elements of a set of
matches (i.e., a configuration) are related among them by
exploiting schema-information (i.e., different interpreta-
tions are generated). On the other hand, in SQLSUGG firstly
templates are selected (i.e., a fragment of the database that
connect different elements of the database) and after that
keywords are matched to elements in the different frag-
ments; (2) in SQLSUGG templates to generate the SQL
queries are generated offline (i.e., they are predefined)
while in QUEST are generated on-the-fly at run time; and
(3) SQLSUGG considers aggregate functions and QUEST
does not consider them. Nevertheless, the techniques used
by SQLSUGG to consider that kind of operators can be easily
incorporated to QUEST. Another interesting work is DBease
[34], a system that allows users to choose between three
different options to perform their search: (1) using a
recommendation system that suggests keywords from the
database instance while the users are typing their queries,
(2) using multiple input boxes to formulate queries instead
of only one (the different boxes are related to different
tables of the database underlying), or (3) using SQLSUGG
(previously described). Nevertheless, neither DBease nor
SQLSUGG consider queries previously formulated by users
or the order of the keywords in the query to suggest SQL
queries. In this way, they only exploit the information

obtained from the database without taking into account
the users' point of view (users' perspective).

Most of the existing approaches rely on indexes and
functions over the data values to select the most promi-
nent tuples as results of queries. Only recently metadata-
based approaches have been developed [35]. These
approaches are useful when there is no direct access to
the database instance (as it happens for sources that are
behind data-intensive web applications in the deep web)
or when frequent updates make the process of building
and updating indexes too expensive. QUEST can also work
in this scenario, by “simulating” and approximating the
results of full-text index search (unavailable in these
conditions) with semantic matchings, similarity measures
and data type compatibilities using the techniques we
have previously developed [13].

Finally, although keyword search is the most well-
known approach that facilitates query answering, there
are others that also try to help the user in various ways.
These include the Query-by-Example [36], the Exemplar
Queries [29], and Query Relaxation [37,38].

5. Experimental evaluation
5.1. Experimental setup

The data sources. We employed two databases frequently
used in the literature for experimental evaluations: Mon-
dial® and a relational implementation of DBLP.* Even if the
databases contain a comparable number of database terms
(227 and 237 terms, respectively), they differ in size and
number of connections among the data structures. DBLP
has a simple structure where the tables can be joined in the
majority of the cases by a unique path. Conversely, the
Mondial structure is complex and tables are often joined by
multiple paths. Concerning the instances, the size of Mon-
dial is more than two orders of magnitude smaller than
DBLP. By way of example, “People” and “inproceedings”,
describing authors and papers, are definitely two of the
largest DBLP tables and have both a cardinality close to one
million tuples. Moreover, papers are linked to the respective
authors through the table “author_inproceedings” which
counts around four million tuples. The tables in Mondial are
smaller: only one table, “city” contains three thousand
instances, and the other tables include around (or less) five
hundred tuples. Table 2 summarizes the main character-
istics of the evaluation dataset.”

These features make the selected databases at opposite
levels in an evaluation system which compares small size
vs. big size databases and flat databases vs. databases with
complex data structures. Consequently, we expect that in
the computation of configurations (i.e., the matching of
user keywords into database terms) QUEST performs
better in Mondial than in DBLP, due to the database size.
On the contrary, we expect that in the computation of the
interpretations QUEST performs better in DBLP, since

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/
4 http://dblp.uni-trier.de/
5 The data about the Mondial database are taken from [39].

http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://dblp.uni-trier.de/

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 13

Mondial has a greater number of possible paths (i.e., FK-
PK relations) connecting the tables.

The query datasets. The construction of a query training
dataset is a critical task since synthetic keyword queries do
not resemble the actual distribution of information needs,
and, on the other hand, self-authored queries have a strong
potential for bias [40,41]. In addition, it is unfeasible to have a
sufficient number of queries formulated by independent
third parties with a description of their intended meaning.
For this reason, we adopted a mixed approach where a small
dataset of queries provided by independent users are
exploited for creating a large dataset. In particular, we asked
a set of users (25 person) to provide keyword queries for
these databases alongside a natural language description of
what they were looking for. We obtained a total of 69 and
144 queries for the Mondial and DBLP database, respectively.
The numbers of keywords in the queries range from 1 to 5
(3.2 in average). A database expert translated each descrip-
tion into an explanation (i.e., an SQL query), obtaining a
reference to evaluate the results returned by QUEST.° Then,
the explanations have been exploited by a software applica-
tion as a template for the generation of new keyword
queries. We adopted a 10-fold cross validation evaluation
approach, where each fold is composed of 10 000 keyword
queries (9000 queries are used as training dataset, and 1000
as test dataset). We performed the experiments for each fold,
and we computed the result as the average of the outcomes
obtained in each fold. We also adopted subsets of the
training datasets (i.e., including the first 0, 250, 500, and
1000 keyword queries of each fold) for evaluating the
performance of the system in cold-start scenarios.

The system setup. The experiments were performed on a
Linux Ubuntu virtual machine created in Oracle VM
VirtualBox. This machine was setup with 3 processors
and 5 GB of RAM. QUEST modules were implemented in
C+ + and in Java. MySQL was our DBMS.

The experiments. QUEST has been evaluated by taking into
account five perspectives. Firstly, the three components of
the approach have been evaluated separately: in Section 5.2
the forward step, in Section 5.3 the backward step, and in
Section 5.4 the combination. Then, in Section 5.5 we eval-
uated how QUEST performs on sources where no direct
access to the instance is available. Finally, in Section 5.6 a
benchmark [39] is used for comparing QUEST with other
systems.

The evaluation. The experiments aimed to evaluate the
effectiveness and the efficiency of the approach. In the
literature, the effectiveness of a keyword search engine is
usually evaluated in terms of recall and precision of the
results retrieved. Nevertheless, except for the comparison
with the benchmark, we decided to evaluate the effective-
ness by measuring the accuracy of the results considering the
top-k results retrieved (the percentage of correct results in k
results retrieved). For example, if the accuracy of the top-1
results is 90%, this means that in 90% of queries evaluated the
first output matches the expected result of the user. More-
over, we applied the accuracy measure to the configurations/

6 Note that the extraction of the corresponding configuration and
interpretation from an explanation is a straightforward process.

interpretations/explanations because QUEST actually does
not retrieve directly the data, but it generates a set of
keyword queries to be executed by the database manage-
ment system holding the data.

Finally, the system efficiency was measured by taking into
account the time needed for generating a set of configura-
tions/interpretations/explanations. We did not report the time
required to actually evaluate the explanations - ie., SQL
queries running time - since our aim is to measure QUEST
avoiding the performance of the DBMS to blur the results.

5.2. The forward analysis step

The goal of the forward analysis step is to compute
configurations, i.e., mapping of user keywords into data-
base terms. Two operating modes, the “a priori”, based of
the database analysis, and the “feedback-based”, exploiting
the user feedback, have been implemented and evaluated.

Effectiveness. We expect our application to be employed for
querying unknown databases where little or no information
about the queries previously submitted to the system is
available for the training. In such scenario, the a priori
operating mode is able to compute configurations of key-
words based on the knowledge of the database schema and
contents. Fig. 6 reports the cumulative accuracy achieved in
our experiments. The result expected by the user is always in
the top-10 results generated by QUEST in the Mondial
database, slightly worse accurate levels are achieved against
DBLP, as expected for the large size of this database. Let us
recall that the a priori operating mode is based on a transition
matrix where the values are computed by applying heuristic
rules. As a reference, Fig. 6 shows the accuracy obtained with
a transition matrix populated with uniform values (no heur-
istic rules are applied).

In the feedback-based operating mode, the implicit feed-
back provided by the users is used as a training supervised
dataset, i.e., the user can in some way specify if and which
answers satisfy their information needs. To simulate the
performance of the system in this scenario, we conducted
several experiments where QUEST has been trained with a
dataset composed of two parts: one including supervised
data, the other unsupervised data. In particular, the unsu-
pervised dataset was built by assuming the system working
correctly. Therefore, the unsupervised dataset contains for
each instance a query and the best configuration computed
by QUEST. By means of this setting, we try to mimic the
users' behavior (i.e., we assume that the user feedback is not
always available). The fraction of supervised/unsupervised
data in the training dataset was different in each test-run.

Fig. 7 shows the results of our experiments. We label
series in Fig. 7(a) and (c) (referring to the DBLP and Mondial
database, respectively) with the format “###S_1/X" to indi-
cate that we are using a training dataset of 9000 queries with
a supervised initial training set of ### queries, and after
there is a user feedback for 1 out of X queries (i.e.,, 1 out X
queries in the dataset is supervised). Fig. 7(b) and (d) shows
how accurate the performance is after smaller training
datasets composed of 0,” 250, 500 and 1000 queries (in this

7 In this case no query is provided as training set.

14 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

Table 2
Main characteristics of the evaluation dataset.

Dataset Size (MBs) Relations |V| |E| IT|
Mondial 16 28 17 56 12
DBLP > 1800 15 >4000 >7500 >4000

|V|, number of nodes (tuples) in data graph (in thousands); |E|, number of
edges (foreign keys) in data graph (in thousands); and |T|, number of
unique terms (in thousands).

100%
90%
80%

70%

60% DBLP-apriori —+—
o DBLP-uniform —x—
50% Mondial-apriori —K—

40% T : . , . Mondial-uniform —H—

top-1 top-2 top-3 top-5 top-10

Fig. 6. Cumulative accuracy of the a priori forward analysis step.

case, the labels of the series have the format “$$$:”, meaning
that we are considered a dataset composed of just $$$
queries) are used. In both cases, the test set includes 1000
queries. We experimented these last scenarios with only a
complete supervised and unsupervised approach.

The experiments show that with a large training dataset
only a little amount of supervised queries is required for
obtaining high performance. With smaller training datasets,
the behavior of the system is polarized: only few supervised
queries (more than 250) enable accurate results, around 100%
even considering only top-1 answers. When the datasets are
uniquely composed of unsupervised queries, the performance
decreases. Note that (i) the accuracy is generally worse in the
experiments against DBLP, due to the large size of the
database; (ii) in the DBLP database, the accuracy slightly
decreases when the set of unsupervised queries increases
(see Fig. 7(b)). This is due to the “wrong answers” learned by
the system. Finally, note that the level of accuracy obtained
when no query is provided as training (i.e., the lines referred
as unsupervised in Fig. 7(a) and (c), and the line referred as 0:
unsuper in Fig. 7(b) and (d)) is different from what obtained in
the a priori mode. This is due to the different probability
distribution in matrix A. In the first case the distribution
follows the heuristic rules described in Section 3.1. In the
second case, the distribution is uniform: the E-M training
algorithm did not perform any change to the initial probability
distribution, since no training query has been provided.

To experiment the accuracy of the combination of the
operating modes, we performed a number of test-runs where
the results computed with the a priori and the feedback-based
modes are combined with different “degrees of uncertainty”.
Fig. 7(e) reports the results of our experimentation for some
settings of the Mondial database with the parameters max-
imizing the accuracy of the results. Similar results are obtained
with DBLP. Note that in small size datasets, where the
operating modes in isolation do not perform well, the combi-
nation of the approaches generates high accuracy results.

Efficiency. The forward analysis step has been evaluated
considering two parameters: the number of keywords in a

query, and the number of configurations to be computed as a
result. In particular, we tested the system with queries
composed of 1, 2, 3 and 5 keywords, and we computed the
time required for retrieving top-1, top-10 and top-100
results. Fig. 7(f) reports the results of the experiments: the
time performance differs in the two databases (solving
queries in DBLP is up to 10 times slower than in Mondial)
and it increases with the number of keywords. Since Mondial
and DBLP have almost the same number of database terms,
the experimental result seems to be only partially consistent
with the computational complexity of the Viterbi algorithm,
used for computing the configurations, which is O(Ikd?),
where [is the number of keywords, k the number of answers
considered (top-k), and d the number of states. The discre-
pancy can be justified by the different size of the databases:
DBLP is far larger than Mondial, and the time required to the
full-text search function for retrieving the possible attributes
(not estimated in the theoretical complexity calculus) largely
differs between the databases. In addition, we would expect
the efficiency to get worse with the increase of the results
retrieved. In practice this is not the case since the number of
possible configurations is in the majority of the cases less
than 10. Finally, we do not take into account efficiency
concerns related to the combination process performed by
the DST, since it takes only a few milliseconds and therefore
can be ignored.

5.3. The backward analysis step

The backward analysis step provides the interpreta-
tions of the configurations computed with the forward
analysis step, i.e., it maps the configurations into paths
over the database schema.

Effectiveness. For evaluating the effectiveness, we firstly
tested the accuracy of the step in isolation, i.e., without the
previous forward analysis step. In this way, we compute the
highest level of accuracy that the backward analysis step can
achieve. Then, we implemented and tested an algorithm
computing the interpretations as the top-k shortest path
connecting the terms in the configurations. This allowed us
to compare the capability of the backward analysis step with
another technique. The series with a ‘BEST” suffix in Fig. 8
measure the accuracy of the backward analysis step imple-
mented as described in Section 3.2; the series with a suffix
“SP” show the shortest path trends. As expected, the
accuracy is higher in DBLP, due to the flat structure of the
schema, and the BEST algorithm performs better than the
shortest path (especially for a database with complex
schema as the Mondial database).

Efficiency. Fig. 9 shows the time required for building the
interpretations. The time complexity of the DPBF algorithm
extended in QUEST for computing the Steiner Trees is
0(3'n2k+2'mnk), where I is the number of keywords, n the
number of nodes (i.e., the attributes in the database), k the
number of answer to be considered, and m the number of
edges in the tree (i.e., the connections from attributes to
primary keys in the same table, and from foreign keys to
primary keys). The performances are consistent with the
theoretic computation: they decrease with the increase of
keywords, connections among schema elements (m), and the
number of answers to be computed (k).

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 15

a
100% ;@g// o
90%
80%
70%
60%
50%
40% T T T
top-1 top-2 top-3
supervised —+— 3000S —=— 5000S_1/10S —e—
1000S —<— 3000S_1/10S —®— unsupervised —4&—
1000S_1/10S —*— 50008 —&— 1/10S —a—
C
100% — |]
90%
80%
70%
60%
50%
40% : : :
top-1 top-2 top-3
supervised —+— 3000S —=— 5000S_1/10S —&—
1000S —<— 3000S_1/10S —®— unsupervised —4&—
1000S_1/10S —*— 50008 —o— 1/10S —a—
e
100% X
80% i
60% KB 5 | I
KR4 R4 RED | R
K% R R | KA
40% o P RIS | R
R %! (o2 I %
X5 o3 K | K
144 RS RE | RS
KB o9 £k <4
20% K& 2 KEA | KA
o Podic 54 e | K
0 e o SERRS
& $ o. $ 9
%O’L 00& % 00"(/ %
: % 2 % 2
% s, % % /)‘“o

AP 1 WF XXXJ DST B4

100%) g 2
90%
80%
70%
60%

50%

40% T T T
top-1 top-2 top-3

O:unsuper —+— 500:unsuper —&5— 1000:super —@—
250:unsuper —><— 500:super —@—
250:super —+— 1000:unsuper —&—

100% — % "

95%
90%
85%
80%
75%
70%
65%

60% : : :
° top-1 top-2 top-3

O:unsuper ——— 500:unsuper —5— 1000:super —@—
250:unsuper —><— 500:super ——
250:super —&— 1000:unsuper —&—

10000
g B
B
K]
= BB o
9 ot TS !
Q r B R o
7] BB 1
B R
£ B R <
g R]
= b B R o
] s I . B
ol s ! 1
1S B R 1 %
g = s S
=1 R !
) s ARSI R SR
potslrabisse| O 4res o
IR R s Ko B A RS S
BRI R DX e B ettt
1000 (R4 kI 4
(B D R P BS] X S
[feotet it lonts! 4
A LA R KA X g5 4
B KA PRI B B B LA
< (A2 Kt R P st 1
18238 K< s b4 4
eS| iO sl @elisss @i !
{E DA PR
Ll < 1< KXl .|
top 1

top 10
of keywords

Mondial XXX DBLP B2

Fig. 7. Cumulative accuracy of the forward analysis step with feedback. (a) DBLP database - large datasets. (b) DBLP database — small datasets. (c) Mondial
database - large datasets. (d) Mondial database — small datasets. (e) Application of the DST to Mondial. (f) Time for computing the configurations.

5.4. Combining the steps

Effectiveness. To experiment the accuracy of the combi-
nation of the steps, we ran the backward analysis step with
the configurations computed by the forward analysis step.
Then, we computed the final scores of the explanations as
the combination of the scores returned by the forward and
the backward analysis step. Again, we conducted a number
of test runs where different “degrees of uncertainty” have
been fixed for both the steps to find the parameters
maximizing the accuracy of the results. Fig. 10(a) and (b)
for DBLP and Fig. 10(c) and (d) for Mondial) shows that

there is no relevant difference considering a small or a
large dataset.

In addition, we ran another experiment, depicted in
Fig. 10(f), with two particular settings to evaluate if the
forward and the backward analysis steps can provide
accurate results in isolation. In the first setting (the series
with the suffix “SP”), we computed the interpretations of
the configurations retrieved with the forward analysis step
by selecting the ones with the shortest path (similarly to
what we did in the previous section). In the second setting
(represented by the series with the postfix “NOF”), we ran
the backward analysis step decoupled from the forward

16 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

analysis step, i.e., interpretations are computed for all the
possible combinations of the attributes associated to the
keywords, as found by the full-text search function. The
experiment shows that the results achieved with these
settings are worse than the ones computed with the
QUEST technique (marked as “supervised”).

Efficiency. The time for computing the combinations
and generating the explanations is few milliseconds and
can be ignored.

5.5. QUEST without full access to the database

In some scenarios, to suppose a full access to the database
instance and the availability of full-text indexes could be
infeasible. This is the case for databases behind data-intensive
websites in the deep web (i.e., the database is not directly
accessible, only its schema), data sources which are the result
of a virtual data integration process (i.e., there is no data, only
an integrated schema), and databases which are subject to
frequent and unpredictable updates (due to the high costs for
keeping the indexes updated). To experiment if QUEST is able
to perform well in these circumstances, we considered a
scenario where only schema descriptions are available. The
application of techniques exploiting this knowledge for find-
ing out which database terms can be possibly matched into
the user keywords makes QUEST usable also in this scenario.
In this experiment, we used regular expressions for defining
for each attribute a syntactic description of its possible
content. Other techniques, based for example on public
ontologies and thesauri or on the “Semantic Distance” as we
proposed in [14] can provide improved results. Fig. 11 shows
the cumulative accuracy of the configurations obtained in
some settings of the DBLP database. As expected, the accuracy
is lower compared to the scenarios where the full-text indexes
are available.

As described in Section 3.2, the computation of the
interpretations in the backward analysis step relies on a
distance based on mutual information. Such a distance is
computed by analyzing the data actually stored in the
source. If the data are not accessible, as in the current
scenario, this measure cannot be computed. Despite of this
fact, we performed an experiment where the results
obtained from previous queries are used for populating a
“reduced” version of the original database, having the same
schema and containing only the tuples returned to the user
as an answer. Hence we employed a training dataset of 250,
500, and 1000 query to accordingly populate the reduced
database following the usual supervised/unsupervised set-
tings. The results reported in Fig. 12 show that in unsuper-
vised scenarios, even if a relative small training dataset is
available, in the 80% of the cases, the interpretation match-
ing the intended meaning of the user query is in the first 10
results provided by the system. In the supervised scenarios,
this happens almost for the 100% of the queries.

Finally, we combined the interpretations obtained with
the corresponding configurations. The results in Fig. 10(e)
show that QUEST has a polarized behavior. Without super-
vised queries the accuracy is low and only 60% of the correct
answers are in the top-10 results provided by the system.
Nevertheless, with a few amount of supervised queries, the
performance increases and reaches values greater than 85%.

100% | 4 : * > %
80% W

60%

40% E}/‘5*/45/9’—’E
DBLP_BEST —f—

20% Mondial_BEST —X<—
DBLP_SP —X—
Mondial_SP ——

0%
top-1 top-2 top-3 top-5 top-10

Fig. 8. Cumulative accuracy of the backward analysis step.

100000
50000

Mondial £XX3
DBLP EXXXA

time(msec)

3
top 1

toE 10
of keywords

Fig. 9. Time required for computing the interpretations.

The performance remains practically unvaried if we consider
supervised datasets of 250, 500 and 1000 queries. With a
supervised set of 9000 queries (not shown in Fig. 10(e)), the
results improve: the accuracy is 64.7% considering the top-1
result, and 93.7% considering the top-10.

5.6. Comparison with other approaches

The comparison of the performance obtained by key-
word search approaches over relational databases is a
complex task, mainly, due to the absence of a standard
benchmark. The existing approaches have been evaluated
against different databases with different query sets. This
fact prevents their direct comparison based on their original
experimental results. Moreover, in some cases, the evalua-
tion framework adopted seems to be inadequate, mainly,
due to the employment of a small number of self-authored
queries [41], leading to biased results. Only recently, a
benchmark [39] proposed some metrics and a query set
to evaluate approaches against three data sources (Mondial,
IMDB and Wikipedia). Even if the benchmark represents an
important step towards a fair evaluation of keyword search
approaches, the metrics adopted (precision and recall
compared to a golden standard, and time needed for
returning the results) cannot be suitable when applied to
a schema-based keyword search system, such as QUEST,
which transform keyword queries into SQL queries. The
benchmark, in fact, computes the effectiveness of the
approaches by analyzing the results (instances) retrieved
with specific keyword queries whereas schema-based
search approaches provide SQL queries as results [42]. Note
that all the tuples resulting from the same SQL query have
intrinsically the same score, and that the same result can be
obtained by different queries.

Aware of the possible limitations, we evaluated the effec-
tiveness of our approach against the benchmark in [39], to
provide an “external” reference to the QUEST capabilities. The
Mondial database has been selected as reference source, since
it has a complex schema (more challenging than the other
sources) and a non trivial size. Fig. 13 illustrates the result of

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 17

a
100%

90% - -

80% [~ -

70% |- -

60% [~ -

50%

40%

| | | | |
top-1 top-2 top-3 top-5 top-10

supervised —+— 30008 —H=—
1000S —<— 3000S_1/10S —&—
1000S_1/10S —*— 5000S —o—

5000S_1/10S —e—
unsupervised —&—
1/10S —a—

C
100% - -

90% - -

80%

70% - -

60% [~ -

50% - -

40%

| | | | |
top-1 top-2 top-3 top-5 top-10

supervised —+— 30008 —=—
1000S —<— 3000S_1/10S —&—
1000S_1/10S —*— 5000S —o—

5000S_1/10S —e—
unsupervised —&—
1/10S —a—

e
100% -

80%
60%
40% -

20% - .

% | | | |

0% top-2 top-3 top-5 top-10

250:unsuper —+— 500:super —H=—
250:super —<— 1000:super —8—

500:unsuper —*— 1000:unsuper —&—

b

100% -

90%

80%

70% -

60%

50% -

40%

| | | | |
top-1 top-2 top-3 top-5 top-10

0:unsuper —+— 500:unsuper —&—
250:unsuper —<— 500:super ——
250:super —*k— 1000:unsuper —&—

1000:super —@—

d

100% -
90%

80%

70% | -
60% - -

50% - -

40%

| | | | |
top-1 top-2 top-3 top-5 top-10

0:unsuper —+— 500:unsuper —&—
250:unsuper —x— 500:super —#—
250:super —*k— 1000:unsuper —&—

1000:super —@—

100% X/#f’/*/_/;*/ﬂt ——k —
80% M -

€0% L i/;/././a.?g/./a 7
40% - @/9/9//&/@ -

20% -

|
top-10

0% | | | |
° top-1 top-2 top-3 top-5

DBLP_supervised —+—
Mondial_supervised —>—

DBLP_SP —%—

DBLP_NOF —H=—
Mondial_SP —&—
Mondial_NOF —&—

Fig. 10. Cumulative accuracy of the combined step. (a) DBLP database - large datasets. (b) DBLP database — small datasets. (c) Mondial database - large
datasets. (d) Mondial database - small datasets. (e) DBLP database without full text indexes. (f) Simulation for the steps in isolation.

our experiments in which for the forward analysis we use the
HMM with the a priori mode only. We limited the experi-
mentation to 35 queries out of the 50 included in the
benchmark. The 15 queries that were not considered® since
their resolution is possible only with SQL queries with self-
joins, feature currently not supported in QUEST. This choice in
the design of our framework directly implies from the
definition of a configuration as an injective function, and,

8 These are the queries 21-25 and 36-45.

consequently, two keywords in the same query cannot be
mapped into the same database term. Nevertheless, this kind
of query is not frequent (in our experiments with “real” users
we have never found this kind of queries) and this constraint
can be removed with the only effect to increase the number of
possible configurations. To make our approach as simple as
possible, we preferred to maintain the constraint in the paper
and to limit the number of experiments. moreover, as high-
lighted in the benchmark, most of the approaches are not able
to solve all the queries over all the databases. Fig. 13(a) shows
that QUEST is able to find the solution for all the 35 queries.

18 S. Bergamaschi et al. / Information Systems 55 (2016) 1-19

100%

80%

0:unsuper —+—
250:unsuper —<—
250:super —kK—
500:unsuper ——
500:super —l—
1000:unsuper —5—
1000:super —@—
a-priori —A&—

60%

40%

20%

00/0 T T T T T
top-1 top-2 top-3 top-5 top-10

Fig. 11. Cumulative accuracy of the forward analysis step applied to the
DBLP database without full text indexes.

100%
90%

80%
260:unsuper —+—
260:super —<—
600:unsuper —¥K—
600:super ——
1000:super —l—
1000:unsuper —5—

70%

50%

60% — T T T T
top-1 top-2 top-3 top-6 top-10

Fig. 12. Cumulative accuracy of the backward analysis step applied to the
DBLP database without full text indexes.

U LT

QUEST BANKS DISCOVERDISCOVER-IT BANKS-II DPBF BLINKS STAR

[l

QUEST BANKS DISCOVERDISCOVER-IT BANKS-II DPBF BLINKS STAR

Fig. 13. Comparison with other approaches. (a) Recall. (b) Precision top 1.

Fig. 13(b) shows the precision if we only consider the first
result provided by the search engines. QUEST obtains results
with high precision degree, even if compared to the other
approaches. The same happens if we consider the precision
degree with respect to the top-10 results provided by the
search engines. In this case, QUEST achieves a precision equal
to 0.58 with a standard error 0.06. The precision of the other
approaches is an average around 0.4 (only the STAR system
obtains a final score similar to QUEST, close to 0.6).

6. Conclusion
We have presented QUEST, a framework for keyword

search over relational databases which divides the process
for solving keyword queries in three steps: forward, backward

and the combination of the two. The forward step generates
configurations, i.e., mappings keywords into database terms.
Configurations are derived following a user perspective, i.e.,
taking into account how the query has been formulated by
the user. The backward step formulates interpretations of the
obtained configurations, i.e., paths joining the database struc-
tures involved in a configuration. These are computed follow-
ing a database perspective, i.e., taking into account how the
information is actually fragmented in a number of tables in
the database. Configurations and respective interpretations
are combined to form an answer to the keyword query and
ranked by means of a probabilistic framework which allows
users to specify a level of uncertainty.

QUEST is completely customizable and able to provide —
as experimental results demonstrate - highly accurate
results independently of the database size, structure com-
plexity, direct access to the instance, and availability of full-
text search functions.

Acknowledgment

The authors would like to acknowledge networking
support by the ICT COST Action IC1302 KEYSTONE - Seman-
tic keyword-based search on structured data sources (wWww.
keystone-cost.eu).

References

[1] J.X. Yu, L. Qin, L. Chang, Keyword search in databases, in: Synthesis
Lectures on Data Management, Morgan & Claypool Pub., San Rafael,
California (USA), 2010.

V. Hristidis, Y. Papakonstantinou, Discover: keyword search in

relational databases, in: Proceedings of 28th International Confer-

ence on Very Large Data Bases, VLDB 2002, August 20-23, Hong

Kong, China, 2002, pp. 670-681.

S. Agrawal, S. Chaudhuri, G. Das, Dbxplorer: a system for keyword-

based search over relational databases, in: Proceedings of the 18th

International Conference on Data Engineering, San Jose, CA, USA,

February 26-March 1, IEEE Computer Society, Washington, DC

20036-4928, 2002, pp. 5-16.

B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, Parag, S.

Sudarshan, Banks: browsing and keyword searching in relational

databases, in: Proceedings of 28th International Conference on Very

Large Data Bases, VLDB 2002, August 20-23, Hong Kong, China,

2002, pp. 1083-1086.

Y. Luo, X. Lin, W. Wang, X. Zhou, Spark: top-k keyword query in

relational databases, in: Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Beijing, China, June 12—

14, ACM, New York, New York 10121, 2007, pp. 115-126.

S. Tata, G.M. Lohman, SQAK: doing more with keywords, in:

Proceedings of the ACM SIGMOD International Conference on

Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June

10-12, ACM, New York, New York 10121, 2008, pp. 889-902.

F. Liu, C.T. Yu, W. Meng, A. Chowdhury, Effective keyword search in

relational databases, in: Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Chicago, Illinois, USA,

June 27-29, 2006, pp. 563-574.

L. Qin, J.X. Yu, L. Chang, Keyword search in databases: the power of

rdbms, in: Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD 2009, Providence, Rhode

Island, USA, June 29-July 2, ACM, New York, New York 10121, 2009,

pp. 681-694.

A. Simitsis, G. Koutrika, Y.E. loannidis, Précis: from unstructured

keywords as queries to structured databases as answers, VLDB J. 17

(1) (2008) 117-149.

[10] T. Tran, H. Wang, S. Rudolph, P. Cimiano, Top-k exploration of query
candidates for efficient keyword search on graph-shaped (rdf) data,
in: Proceedings of the 25th International Conference on Data
Engineering, ICDE 2009, March 29-April 2, Shanghai, China, IEEE
Computer Society, Washington, DC 20036-4928, 2009, pp. 405-416.

2

[3

[4

[5

[6

(7

8

[9

www.keystone-cost.eu
www.keystone-cost.eu
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref9
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref9
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref9

S. Bergamaschi et al. / Information Systems 55 (2016) 1-19 19

[11] V.S. Uren, Y. Lei, E. Motta, Semsearch: Refining semantic search, in:
The Semantic Web: Research and Applications, Proceedings of the
5th European Semantic Web Conference, ESWC 2008, Tenerife,
Canary Islands, Spain, June 1-5, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 2008, pp. 874-878.

[12] Q. Zhou, C. Wang, M. Xiong, H. Wang, Y. Yu, Spark: adapting
keyword query to semantic search, in: 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007
+ ASWC 2007, Busan, Korea, November 11-15, 2007, pp. 694-707.

[13] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo-Lado, Y. Velegrakis,
Keyword search over relational databases: a metadata approach, in:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16,
ACM, New York, New York 10121, 2011, pp. 565-576.

[14] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. Trillo-Lado,
Y. Velegrakis, Keymantic: semantic keyword-based searching in data
integration systems, Proc. VLDB Endow. 3 (2) (2010) 1637-1640.

[15] S. Bergamaschi, F. Guerra, S. Rota, Y. Velegrakis, A hidden Markov
model approach to keyword-based search over relational databases,
in: Proceedings of the 30th International Conference on Conceptual
Modeling, ER 2011, Brussels, Belgium, October 31-November 3,
Lecture Notes in Computer Science, vol. 6998, Springer, Berlin,
Heidelberg, 2011, pp. 411-420.

[16] S. Rota, S. Bergamaschi, F. Guerra, The list viterbi training algorithm
and its application to keyword search over databases, in: Proceed-
ings of the 20th ACM Conference on Information and Knowledge
Management, CIKM 2011, Glasgow, United Kingdom, October 24-28,
ACM, New York, New York 10121, 2011, pp. 1601-1606.

[17] S. Bergamaschi, F. Guerra, M. Interlandi, R. Trillo-Lado, Y. Velegrakis,
QUEST: a keyword search system for relational data based on
semantic and machine learning techniques, Proc. VLDB Endow. 6
(12) (2013) 1222-1225.

[18] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, Boston, USA, 1995.

[19] L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernandez, R. Fagin, Translat-
ing web data, in: Proceedings of 28th International Conference on
Very Large Data Bases, VLDB 2002, August 20-23, Hong Kong, China,
2002, pp. 598-609.

[20] R. Fagin, L.M. Haas, M.A. Hernandez, R.J. Miller, L. Popa, Y. Velegrakis,
Clio: schema mapping creation and data exchange, in: Conceptual
Modeling: Foundations and Applications — Essays in Honor of John
Mylopoulos, Lecture Notes in Computer Science, vol. 5600, Springer,
Berlin, Heidelberg, 2009, pp. 198-236.

[21] R. Kumar, A. Tomkins, A characterization of online search behavior,
[EEE Data Eng. Bull. 32 (2) (2009) 3-11.

[22] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, J. R. Stat. Soc.: Ser. B 39 (1977)
1-38.

[23] J.M. Kleinberg, Authoritative sources in a hyperlinked environment,
J. ACM 46 (September (5)) (1999) 604-632.

[24] B. Ding,].X. Yu, S. Wang, L. Qin, X. Zhang, X. Lin, Finding top-k min-
cost connected trees in databases, in: Proceedings of the 23rd
International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, IEEE, Washington,
DC 20036-4928, 2007, pp. 836-845.

[25] X. Yang, C.M. Procopiuc, D. Srivastava, Summary graphs for rela-
tional database schemas, Proc. VLDB Endow. 4 (11) (2011) 899-910.

[26] K. Golenberg, B. Kimelfeld, Y. Sagiv, Keyword proximity search in
complex data graphs, in: SIGMOD, New York, NY, USA, ACM, New
York, New York 10121, 2008, pp. 927-940.

[27] R.Fagin, R. Kumar, M. Mahdian, D. Sivakumar, E. Vee, Comparing and
aggregating rankings with ties, in: Proceedings of the 23rd ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 14-16, Paris, France, 2004, pp. 47-58.

[28] L. Liu, R.R. Yager, Classic works of the Dempster-Shafer theory of
belief functions: an introduction, in: Classic Works of the Dempster—
Shafer Theory of Belief Functions, Studies in Fuzziness and Soft
Computing, Springer, Berlin, Heidelberg, 2008, vol. 219, pp. 1-34.

[29] D. Mottin, M. Lissandrini, Y. Velegrakis, T. Palpanas, Exemplar
queries: give me an example of what you need, Proc. VLDB Endow.
7 (5) (2014) 365-376.

[30] A. Bonifati, Y. Velegrakis, Schema matching and mapping: from
usage to evaluation, in: Proceedings of the 14th International
Conference on Extending Database Technology, EDBT 2011, Uppsala,
Sweden, March 21-24, 2011, pp. 527-529.

[31] H. He, H. Wang,]. Yang, P.S. Yu, Blinks: ranked keyword searches on
graphs, in: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Beijing, China, June 12-14, ACM, New
York, New York 10121, 2007, pp. 305-316.

[32] G. Kasneci, M. Ramanath, M. Sozio, EM. Suchanek, G. Weikum, Star:
Steiner-tree approximation in relationship graphs, in: Proceedings
of the 19th ACM Conference on Information and Knowledge
Management, CIKM 2010, Toronto, Ontario, Canada, October 26-
30, IEEE, New York, New York 10121, 2009, pp. 868-879.

[33] J. Fan, G. Li, L. Zhou, Interactive sql query suggestion: making
databases user-friendly, in: Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, Hannover,
Germany, IEEE Computer Society, Washington, DC 20036-4928,
2011, pp. 351-362.

[34] G.Li, J. Fan, H. Wu,]. Wang, J. Feng, Dbease: making databases user-
friendly and easily accessible, in: Online Proceedings of the 5th
Biennial Conference on Innovative Data Systems Research, CIDR
2011, Asilomar, CA, USA, January 9-12, 2011, pp. 45-56.

[35] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, K. Stockinger, Soda:
generating sql for business users, Proc. VLDB Endow. 5 (10) (2012)
932-943.

[36] D. Braga, A. Campi, S. Ceri, XQBE (XQuery By Example): a visual
interface to the standard XML query language, ACM Trans. Database
Syst. 30 (2) (2005) 398-443.

[37] D. Mottin, A. Marascu, S.B. Roy, G. Das, T. Palpanas, Y. Velegrakis, A
probabilistic optimization framework for the empty-answer pro-
blem, Proc. VLDB Endow. 6 (14) (2013) 1762-1773.

[38] C. Mishra, N. Koudas, Interactive query refinement, in: M.L. Kersten,
B. Novikov, J. Teubner, V. Polutin, S. Manegold (Eds.), Proceedings of
the 12th International Conference on Extending Database Technol-
ogy, EDBT 2009, Saint Petersburg, Russia, March 24-26, ACM
International Conference Proceeding Series, vol. 360, ACM, New
York, New York 10121, 2009, pp. 862-873.

[39] J. Coffman, A.C. Weaver, An empirical performance evaluation of
relational keyword search techniques, IEEE Trans. Knowl. Data Eng.
26 (1) (2014) 30-42.

[40]]. Coffman, A.C. Weaver, A framework for evaluating database key-
word search strategies, in: Proceedings of the 19th ACM Conference
on Information and Knowledge Management, CIKM 2010, Toronto,
Ontario, Canada, October 26-30, ACM, New York, New York 10121,
2010, pp. 729-738.

[41] W. Webber, Evaluating the effectiveness of keyword search, IEEE
Data Eng. Bull. 33 (1) (2010) 55-60.

[42] S. Bergamaschi, N. Ferro, F. Guerra, G. Silvello, Keyword search and
evaluation over relational databases: an outlook to the future, in:
7th International Workshop on Ranking in Databases, DBRank 2013,
Riva del Garda, Italy, August 30, ACM, New York, New York 10121,
2013, p. 8.

http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref14
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref14
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref14
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref17
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref18
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref18
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref21
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref21
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref22
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref22
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref22
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref23
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref23
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref25
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref29
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref35
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref35
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref35
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref36
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref36
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref36
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref37
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref37
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref37
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref38
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref39
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref39
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref39
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref41
http://refhub.elsevier.com/S0306-4379(15)00133-7/sbref41

	Combining user and database perspective for solving keyword queries over relational databases
	Introduction
	The three-step framework
	Mapping keywords into database structures
	Combining the identified database structures
	Producing the explanations

	Framework implementation
	Discovering configurations: the forward analysis implementation
	Discovering interpretations: the backward analysis implementation
	Ranking combination implementation
	Generating explanations: the translation

	Related work
	Experimental evaluation
	Experimental setup
	The forward analysis step
	The backward analysis step
	Combining the steps
	QUEST without full access to the database
	Comparison with other approaches

	Conclusion
	Acknowledgment
	References

