
Chapter 6
Understanding the Semantics of Keyword
Queries on Relational Data Without Accessing
the Instance.

Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Silvia Rota, Raquel Trillo
Lado, and Yannis Velegrakis

Abstract The simplicity of keyword queries has made them particularly attractive
to the technically unskilled user base, tending to become the de-facto standard for
querying on the web. Unfortunatelly, alongside its simplicity, came also the loose
semantics. Researchers have for a long time studied ways to understand the keyword
query semantics and retrieve the most relevant data artifacts. For the web, these ar-
tifacts were documents, thus, any semantics discovering effort was based mainly on
statistics about the appearance of the keywords in the documents. Recently, there
has been an increasing interest in publishing structural data on the web, allowing
users to exploit valuable resources that have so far been kept private within com-
panies and organizations. These sources support only structural queries. If they are
to become available on the web and be queried, the queries will be in the form of
keywords and they will have to be translated into structured queries in order to be
executed. Existing works have exploited the instance data in order to build offline
an index that is used at query time to drive the translation. This idea is not always
possible to implement since the owner of the data source is typically not willing to
allow unrestricted access to the data, or to offer resources for the index construction.

Sonia Bergamaschi
DII-UNIMORE, via Vignolese 905 Modena, IT e-mail: sonia.bergamaschi@unimore.it

Elton Domnori
DII-UNIMORE, via Vignolese 905, Modena, Italy e-mail: elton.domnori@unimore.it

Francesco Guerra
DEA-UNIMORE, v.le Berengario 51, Modena, Italy e-mail: francesco.guerra@unimore.
it

Silvia Rota
DII-UNIMORE, via Vignolese 905, Modena, Italy e-mail: silvia.rota@unimore.it

Raquel Trillo
Informática e Ing. Sistemas, c/ Marı́a de Luna 50018 Zaragoza, SP e-mail: raqueltl@unizar.
es

Yannis Velegrakis
University of Trento, Trento, Italy e-mail: velgias@disi.unitn.eu

135

136 Bergamaschi et al.

This chapter elaborates on methods of discovering the semantics of keyword queries
without requiring access to the instance data. It describes methods that exploit meta
information about the source data and the query in order to find semantic matches
between the keywords and the database structures. These matches form the basis for
translating the keyword query into a structure query.

6.1 Introduction

The birth of the Web has brought an exponential growth to the amount of the in-
formation that is freely available to the Internet population, overloading users and
entangling their efforts to satisfy their information needs. Web search engines such
as Google, Yahoo! or Bing have become popular mainly due to the fact that they
offer an easy to use query interface (that is based on keywords) and an effective and
efficient query execution mechanism.

The majority of these search engines do not consider information stored on the
Deep or Hidden Web [9, 28], despite the fact that the size of the Deep Web is es-
timated to be much bigger than the Surface Web [9, 47]. There has been a number
of systems that record interactions with the deep web sources or automatically sub-
mit queries to them (mainly through their web form interfaces) in order to index
their context. Unfortunately, this technique is only partially indexing the data in-
stance. Moreover it is not possible to take advantage of the query capabilities of
data-sources, e.g., of the relational query features, because their interface is often
restricted from the web-form. Besides, web search engines focus on retrieving doc-
uments and not on querying structured sources, so they are unable to access infor-
mation based on concepts [31].

There are, on the other hand, numerous companies and organizations that have
lots of data, so far in their own private (structured) data sources, and are willing to
make the public on the web. These data will remain unexploited unless they can be
queried through keyword-based interfaces which is the de-facto standard on the web.
There are already various studies on how to offer such a service [18, 41, 44, 48, 50],
but they all require prior access to the instance in order to build an index that will
allow them at run time to understand what part of the database that a keyword in the
query is referring to. This is not always feasible since companies and organizations
may have their own restrictions and concerns about allowing an external service
getting full access to the data.

A recent initiative that has attracted considerable attention is the notion of the
Semantic Web1. The idea of the semantic web is to extend the data of the current
web with more structured data (typically expressed in RDF) that will allow it to be
used by machines as well as by people. The success of the Semantic Web depends
on the existence of such kind of information, and on the ability to query it. The
Semantic Web community has so far focused on ways to model this information.

1 http://www.w3.org/standards/semanticweb/

Title Suppressed Due to Excessive Length 137

Allowing relational databases to be published on the Semantic Web will provide
the community with large amounts of data. However, it will also require the design
and development of techniques and tools for querying that information in a way
similar to the way it is currently done on the web, i.e., through keyword queries.
This means that any effort toward supporting keyword queries for structural data is
of major important for the specific community.

This chapter deals exactly with the problem of answering a keyword query over
a relational database. To do so, one needs to understand the meaning of the key-
words in the query, “guess” its possible semantics, and materialize them as SQL
queries that can be executed directly on the relational database. The focus of the
chapter is on techniques that do not require any prior access to the instance data,
making them suitable for sources behind wrappers or web interfaces, or in general
for sources that disallow prior access to their data in order to construct an index.
The chapter describes two techniques that use semantic information and metadata
from the sources, alongside the query itself, in order to achieve that. Apart from
understanding the semantics of the keywords themselves, the techniques are also
exploiting the order and the proximity of the keywords in the query to make a more
educated guess. The first approach is based on an extension of the Hungarian al-
gorithm [11] for identifying the data structures having the maximum likelihood to
contain the user keywords. In the second approach, the problem of associating key-
words into data structures of the relational source is modeled by means of a Hidden
Markov Model, and the Viterbi algorithm is exploited for computing the mappings.
Both techniques have been implemented in two systems called KEYMANTIC [5, 6]
and KEYRY [7], respectively.

The chapter is structured as follows. First, a motivating example is presented to
introduce the reader to the problem and the challenges. Then the problem state-
ment is formally formulated (Section 6.3). Sections 6.4 and 6.5 describe the two
approaches in details. Section 6.6 provides an overview of the related works and
how they differ from the two approaches presented in this chapter.

6.2 Motivating Example

Let us assume that a virtual tourism district composed of a set of companies (travel
agencies, hotels, local public administrations, tourism promotion agencies) wants to
publish an integrated view of their tourism data about a location (see Figure 6.1).
Keymantic allows users to query that data source with a two step process: firstly
the keyword query is analyzed for discovering its intended meaning, then a ranked
set of SQL queries, expressing the discovered meaning according to the database
structure, is formulated.

Each keyword represents some piece of information that has been modeled in the
database, but, depending on the design requirements of the data source, this piece
might have been modeled as data or metadata. Thus, the first task is to discover what
each keyword models in the specific data source and to which metadata / data may be

138 Bergamaschi et al.

Person
Name Phone City Email
Saah 4631234 London saah@aaa.bb
Sevi 6987654 Auckland eevi@bbb.cc
Edihb 1937842 Santiago edibh@ccc.dd

Reserved
Person Hotel Date
Saah x123 6/10/2009
Sevi cs34 4/3/2009
Edihb cs34 7/6/2009

Hotel
id Name Address Service City
x123 Galaxy 25 Blicker restaurant Shanghai
cs34 Krystal 15 Tribeca parking Cancun
ee67 Hilton 5 West Ocean air cond. Long Beach

City
Name Country Description
Shanghai China ...
Cancun Mexico ...
Long Beach USA ...
New York USA ...

Booked
Person Rest Date
Saah Rx1 5/4/2009
Sevi Rx1 9/3/2009

Restaurant
id Name Address Specialty City
Rx1 Best Lobster 25, Margaritas Seafood Cancun
Rt1 Naples 200 Park Av. Italian New York

Fig. 6.1 A fraction of a database schema with its data.

associated to. The association between keywords and database needs to be approxi-
mate: the synonymous and polysemous terms might allow the discovery of multiple
intended meanings, each one with a rank expressing its relevance. Let us consider,
for example, a query consisting of the keywords “Restaurant Naples”. For instance,
a possible meaning of the query might be “find information about the restaurant
called Naples”. In this case, the former keyword should be mapped into a metadata
(the table Restaurant and the other one into a value of the attribute Name of the same
table Restaurant. A user might have in mind other meanings for the same keywords,
for example, “find the restaurants that are located in the Naples Avenue”, or “in the
Naples city”, or “that cook Naples specialties”. All these intended meanings give
rise to different associations of the keyword Naples; attributes Address, City or
Specialty of the table Restaurant. This example shows also that keywords in a query
are not independent: we expect that the keywords express different features of what
the user is looking for. For this reason we expect that in our example “Naples” is a
value referring to an element of the Restaurant table. If the user had formulated the
keyword query “Restaurant name Naples”, the number of possible intended mean-
ings would have been reduced, since the keywords name forces the mappings of
Naples into the attribute Name of the table Restaurant. Notice that different intended
meanings may generate a mapping from the same keyword both into metadata and
into data values. For example, in our database restaurant is the name of a table, but
it is also one of the possible values of the attribute Service in the table Hotel. Finally,
the order of the keywords in a query is also another element to be taken into account
since related elements are usually close. If a user asks for “Person London restau-
rant New York” one possible meaning of the query is that the user is looking for the
restaurant in New York visited by people from London. Other permutations of the
keywords in the query may generate other possible interpretations.

The second step in answering a keyword query concerns the formulation of an
SQL query expressing one of the discovered intended meanings. In a database, se-
mantic relationships between values are modeled either through the inclusion of dif-
ferent attributes under the same table or through join paths across different tables.
Different join paths can lead to different interpretations. Consider, for instance, the
keyword query “Person USA”. One logical mapping is to have the word Person

Title Suppressed Due to Excessive Length 139

corresponding to the table Person and the word USA to a value of the attribute Coun-
try of the table City. Even when this mapping is decided, there are different inter-
pretations of the keywords based on the different join paths that exist between the
tables Person and City. For instance, one can notice that a person and a city are re-
lated through a join path that goes through the City attribute referring to the attribute
Name in the table City (determining which people in the database are from USA),
through another path that is based on the table Hotel (determining which people re-
served rooms of Hotels in USA), and also through another path that is based on
the table Restaurant (determining which people are reserved a table in an American
restaurant).

Finding the different semantic interpretations of a keyword query is a combina-
torial problem which can be solved by an exhaustive enumeration of the different
mappings to database structures and values. The large number of different interpre-
tations can be brought down by using internal and external knowledge that helps in
eliminating mappings that are not likely to lead to meanings intended by the user.
For instance, if one of the provided keywords in a query is ‘‘320-463-1463’’,
it is very unlikely that this keyword refers to an attribute or table name. It most
probably represents a value, and in particular, due to its format, a phone number.
Similarly, the keyword ‘‘Bistro’’ in a query does not correspond to a table or
an attribute in the specific database. Some auxiliary information, such as a thesaurus,
can provide the information that the word “bistro” is typically used to represent a
restaurant, thus, the keyword can be associated to the Restaurant table.

6.3 Problem statement

Definition 6.1. A database D is a collection Vt of relational tables R1,R2, . . . ,Rn.
Each table R is a collection of attributes A1,A2, . . . ,AmR , and each attribute A has a
domain, denoted as dom(A). Let Va={A | A∈R ∧ R∈Vt} represent the set of all the
attributes of all the tables in the database and Vd={d | d=dom(A) ∧ A∈Va} represents
the set of all their respective domains. The database vocabulary of D, denoted as
VD, is the set VD=Vt∪Va∪Vd. Each element of the set VD is referred to as a database
term.

We distinguish two subsets of the database vocabulary: the schema vocabulary
VS C = Vt ∪ Va and the domain vocabulary VDO = Vd that concerns the instance
information. We also assume that a keyword query KQ is an ordered l-tuple of
keywords (k1, k2, . . . , kl).

Definition 6.2. A configuration fc(KQ) of a keyword query KQ on a database D is
an injective function from the keywords in KQ to database terms in VD. In other
words, a configuration is a mapping that describes each keyword in the original
query in terms of database terms.

The reason we consider a configuration to be an injective function is because we
assume that: (i) each keyword cannot have more than one meaning in the same con-

140 Bergamaschi et al.

figuration, i.e., it is mapped into only one database term; (ii) two keywords cannot be
mapped to the same database term in a configuration since overspecified queries are
only a small fraction of the queries that are typically met in practice [22]; and (iii)
every keyword is relevant to the database content, i.e., keywords always have a cor-
respondent database term. Furthermore, while modelling the keyword-to-database
term mappings, we also assume that every keyword denotes an element of interest
to the user, i.e., there are no stop-words or unjustified keywords in a query. In this
paper we do not address query cleaning issues. We assume that the keyword queries
have already been pre-processed using well-known cleansing techniques.

Answering a keyword query over a database D means finding the SQL queries
that describe its possible semantics in terms of the database vocabulary. Each such
SQL query is referred to as an interpretation of the keyword query in database
terms. An interpretation is based on a configuration and includes in its clauses all
the database terms that are part of the image2 of the query keywords through the
configuration. In the current work, we consider only select-project-join (SPJ) in-
terpretations that are typically the queries of interest in similar works [2, 19], but
interpretations involving aggregations [42] are part of our future work.

Definition 6.3. An interpretation of a keyword query KQ = (k1, k2, . . . , kl) on a
database D using a configuration f ∗c (KQ) is an SQL query in the form
select A1, A2, . . ., Ao from R1 JOIN R2 JOIN . . . JOIN Rp where A′1=v1 AND A′2=v2
AND . . . AND A′q=vq
such that the following holds:

• ∀A∈{A1,A2, . . . ,Ao}: ∃k∈KQ such that f ∗c (k)=A
• ∀R∈{R1,R2, . . . ,Rp}: (i) ∃k∈KQ: f ∗c (k)=R or (ii) ∃ki,k j∈KQ: f ∗c (ki)=Ri ∧ f ∗c (k j)=R j
∧ exists a join path from Ri to R j that involves R

• ∀ “A′=v”∈{A′1=v1,A′2=v2, . . . ,A′o=vo}: ∃k∈KQ such that f ∗c (k)=dom(A′) ∧ k = v
• ∀k∈KQ: f ∗c (k)∈{A1,A2, . . . ,Ao,R1,R2, . . . ,Rp,dom(A′1), . . . ,dom(A′q)}

The existence of a database term in an interpretation is justified either by belong-
ing to the image of the respective configuration, or by participating in a join path
connecting two database terms that belong to the image of the configuration. Note
that even with this restriction, due to the multiple join paths in a database D, it is
still possible to have multiple interpretations of a keyword query KQ given a certain
configuration f ∗c (KQ). We use the notation I(KQ, f ∗c (KQ),D) to refer to the set of
these interpretations, and I(KQ,D) for the union of all these sets for a query KQ.

Since each keyword in a query can be mapped into a table name, an attribute
name or an attribute domain, there are 2Σn

i=1|Ri| + n different mappings for each
keyword, with |Ri| denoting the arity of the relation Ri and n the number of ta-
bles in the database. Based on this, and on the fact that no two keywords can be
mapped to the same database term, for a query containing l keywords, there are
|VD |!

(|VD |−l)! possible configurations. Of course, not all the interpretations generated by
these configurations are equally meaningful. Some are more likely to represent the

2 Since a configuration is a function, we use the term image to refer to its output.

Title Suppressed Due to Excessive Length 141

Fig. 6.2 Overview of the keyword query translation process

R1 ... Rn AR1
1 . . . AR1

n1 . . . ARn
nn AR1

1 . . . AR1
n1 . . . ARn

nn

keyword1
keyword2
. . .
keywordk

Fig. 6.3 Weight table with its SW (light) and VW (dark) parts

intended keyword query semantics. In the following sections we will show how dif-
ferent kinds of meta-information and inter-dependencies between the mappings of
keywords into database terms can be exploited in order to effectively and efficiently
identify these meaningful interpretations and rank them higher.

6.4 The Hungarian Algorithm Approach

The generation of interpretations that most likely describe the intended semantics
of a keyword query is based on semantically meaningful configurations, i.e. sets
of mappings between each keyword and a database term. We introduce the notion
of weight that offers a quantitative measure of the relativeness of a keyword to a
database term, i.e., the likelihood that the semantics of the database term are the
intended semantics of the keyword in the query. The sum of the weights of the
keyword-database term pairs can form a score serving as a quantitative measure
of the likelihood of the configuration to lead to an interpretation that accurately
describes the intended keyword query semantics. The range and full semantics of
the score cannot be fully specified in advance. They depend on the method used to
compute the similarity. This is not a problem as long as the same method is used
to compute the scores for all the keywords. This is the same approach followed
in schema matching [37] where a score is used to measure the likelihood that an
element of a schema corresponds to an element of another.

142 Bergamaschi et al.

P R P.Na P.Ph P.Ci P.Em R.Id R.Na R.Ad R.Sp R.Ci P.Na P.Ph P.Ci P.Em R.Id R.Na R.Ad R.Sp R.Ci

people 75 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1
restaurant 0 100 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1
Naples 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1

Fig. 6.4 Intrinsic Weight SW (light gray) and VW (dark gray) matrix.

The naive approach for selecting the best configurations, and, as a consequence,
generating the most prominent interpretations of a keyword query, is the computa-
tion of the score of each possible configuration and then selecting those that have
the highest scores. Of course, we would like to avoid an exhaustive enumeration of
all the possible configurations, and compute only those that give high scores. The
problem of computing the mapping with the maximum score without an exhaustive
computation of the scores of all the possible mappings is known in the literature
as the problem of Bipartite Weighted Assignments [13]. Unfortunately, solutions to
this problem suffer from two main limitations. First, apart from the mutual exclu-
siveness, they do not consider any other interdependencies that may exist between
the mappings. Second, they typically provide only the best mapping, instead of a
ranked list based on the scores.

To cope with the first limitation, we introduce two different kinds of weights: the
intrinsic, and the contextual weights. Given a mapping of a keyword to a database
term, its intrinsic weight measures the likelihood that the semantics of the keyword
is that of the database term if considered in isolation from the mappings of all the
other keywords in the query. The computation of an intrinsic weight is bed on syn-
tactic, semantic and structural factors such attribute and relation names, or other
auxiliary external sources, such vocabularies, ontologies, domains, common syn-
tactic patterns, etc. On the other hand, a contextual weight is used to measure the
same likelihood but considering the mappings of the remaining query keywords.
This is motivated by the fact that the assignment of a keyword to a database term
may increase or decrease the likelihood that another keyword corresponds to a cer-
tain database term. This is again bed on observations that humans tend to write
queries in which related keywords are close to each other [22]. A similar idea has
already been exploited in the context of schema matching [30] with many interesting
results. To cope with the second limitation, we have developed a novel algorithm for
computing the best mappings. The algorithm is based on and extends the Hungarian
(a.k.a., Munkres) algorithm [11] and will be described in detail in Section 6.4.3.

A visual illustration of the individual steps in the keyword query translation task
is depicted in Figure 6.2. A special data structure, called weight matrix, plays a cen-
tral role in these steps. The weight matrix is a two-dimensional array with a row for
each keyword in the keyword query, and a column for each database term. The value
of a cell [i, j] represents the weight associated to the mapping between the keyword
i and the database term j. Figure 6.3 provides an abstract illustration of a weight
matrix. An Ri and ARi

j columns correspond to the relation Ri and the attribute A j

of Ri, respectively, while a column with an underline attribute name ARi
j represents

Title Suppressed Due to Excessive Length 143

the data values in the column A j of table Ri may have, i.e., its domain. Two parts
(i.e., sub-matrices) can be distinguished in the weight matrix. One corresponds to
the database terms related to schema elements, i.e., relational tables and attributes,
and the other one corresponds to attribute values, i.e., the domains of the attributes.
We refer to database terms related to schema elements schema databe terms, and to
those related to domains of the attributes value database terms. In Figure 6.3, these
two sub-matrices are illustrated with different shades of gray. We refer to the weights
in the first sub-matrix schema weights, and to those of the second value weights. We
also use the notation S W and VW to refer either to the respective sub-matrix, or to
their values. The details of the individual steps of Figure 6.2 are provided next.

Intrinsic Weight Computation. The first step of the process is the intrinsic weight
computation. The output is the populated S W and VW sub-matrices. The computa-
tion is achieved by the exploitation and combination of a number of similarity tech-
niques based on structural and lexical knowledge extracted from the data source,
and on external knowledge, such ontologies, vocabularies, domain terminologies,
etc. Note that the knowledge extracted from the data source is basically the meta-
information that the source makes public, typically, the schema structure and con-
straints. In the absence of any other external information, a simple string comparison
based on tree-edit distance can be used for populating the S W sub-matrix. For the
VW sub-matrix the notion of Semantic Distance [15] can always be used in the
absence of anything else. As it happens in similar situations [37], measuring the
success of such a task is not easy since there is no single correct answer. In general,
the more meta-information has been used, the better. However, even in the case that
the current step is skipped, the process can continue with the weight matrix where
all the intrinsic values have the same default value. The computation of the intrinsic
weights is detailed in Section 6.4.1.

Selection of the Best Mappings to Schema Terms. The intrinsic weights provide
a first indication of the similarities of the keywords to database terms. To gener-
ate the prominent mappings, we need on top of that to take into consideration the
inter-dependencies between the mappings of the different keywords. We consider
first the prominent mappings of keywords to schema terms. For that we work on
the S W sub-matrix. Based on the intrinsic weights, a series of mappings MS

1 ,MS
2 ,

. . . , MS
n , of keywords to schema terms are generated. The mappings are those that

achieve the highest overall score, i.e., the sum of the weights of the individual key-
word mappings. The mappings are partial, i.e., not all the keywords are mapped to
some schema term. Those that remain unmapped will play the role of an actual data
value and will be considered in a subsequent step for mapping to value database
terms. The selection of the keywords to remain unmapped is bed on the weight ma-
trix and some cut-off threshold. Those with a similarity below the threshold remain
unmapped. For each of the mappings MS

i , the weights of its S W matrix are adjusted
to take into consideration the context generated by the mapping of the neighboring
keywords. It is based on the observation that users form queries in which keywords
referring to the same or related concepts are adjacent [22, 45]. The generation of the

144 Bergamaschi et al.

mappings and the adjustment of the weights in S W are performed by our extension
of the Hungarian algorithm that is described in detail in Section 6.4.3. The output
of such a step is an updated weight matrix S Wi and, naturally, an updated score
for each mapping MS

i . Given the updated scores, some mappings may be rejected.
The selection is based on a threshold. There is no golden value to set the threshold
value. It depends on the expectations from the keyword query answering systems.
The higher its value, the less the interpretations generated at the end, but with higher
confidence. In contrast, the lower the threshold value, the more the mappings with
lower confidence.

Contextualization of VW and selection of the Best Mappings to Value Terms.
For each partial mapping MS

i of keyword to schema terms generated in the previ-
ous step, the mappings of the remaining unmapped keywords to value terms needs
to be decided. This is done in two phases. First, the intrinsic weights of the VW
sub-matrix that were generated in Step 1 are updated to reflect the added value pro-
vided by the mappings in MS

i of some of the keywords to schema database terms.
This is called the process of contextualization of the VW sub-matrix. It is based on
the documented observation that users form queries in which keywords specifying
metadata information about a concept are adjacent or at let neighboring [22, 45].
Thus, when a keyword is mapped to a schema term, it becomes more likely that an
adjacent keyword should be mapped to a value in the domain of that schema term.
The contextualization process increase the weights of the respective values terms to
reflect exactly that. For example, in the keyword query ‘‘Name Alexandria’’
assume that the keyword Alexandriawas found during the first step to be equally
likely the name of a person or of a city. If in Step 2 the keyword Name has been
mapped to the attribute Name of the table Person, the confidence that Alexandria
is actually the name of a person is increased, thus, the weight between that keyword
and the value database term representing the domain of attribute Name should be
increased, accordingly. In the second phase, given an updated VWi sub-matrix, the
most prominent mappings of the remaining unmapped keywords to value database
terms are generated. The mappings are generated by using again the adapted tech-
nique of the Hungarian algorithm (ref. Section 6.4.3). The result is a series of partial
mappings MV

ik, with k=1..mi, where i identifies the mapping MS
i on which the com-

putation of the updated matrix VWi w bed. Given one such mapping MV
ik the value

weights are further updated to reflect the mappings of the adjacent keywords to value
database terms, in a way similar to the one done in Step 2 for the S W sub-matrix.
The outcome modifies the total score of each mapping MV

ik, and based on that score
the mappings are ranked.

Generation of the Configurations. As a fourth step, each pair of a mapping MV
ik

together with its associated mapping MS
i is a total mapping of the keywords to

database terms, forming a configuration Cik. The score of the configuration is the
sum of the scores of the two mappings, or alternatively the sum of the weights in the

Title Suppressed Due to Excessive Length 145

weight matrix of the elements [i, j] where i is a keyword and j is the database term
to which it is mapped through MV

ik or MS
i .

Generation of the Interpretations. Having computed the best configurations, the
interpretations of the keyword query, i.e., the SQL queries, can be generated. The
score of each such query is the score of the respective configuration. Recall, how-
ever, that a configuration is simply a mapping of the keywords to database terms.
The presence of different join paths among these terms results in multiple interpreta-
tions. Different strategies can be used to further rank the selections. One popular op-
tion is the length of the join path [21] but other heuristics found in the literature [19]
can also be used. It is also possible that a same interpretation be obtained with dif-
ferent configurations. A post-processing analysis and the application of data-fusion
techniques [10] can be used to deal with this issue. However, this is not the main
focus of the current work and we will not elaborate further on it. We adopt a greedy
approach that computes a query for every alternative join path. In particular, we con-
struct a graph in which each node corresponds to a database term. An edge connects
two terms if they are structurally related, i.e., through a table-attribute-domain value
relationship, or semantically, i.e., through a referential integrity constraint. Given
a configuration we mark all terms that are part of the range of the configuration
“marked”. Then we run a breath-first traversal (that favors shorter paths) to find
paths that connect the disconnected components of the graph (if possible). The final
SQL query is then constructed using the “marked” database terms, and in particu-
lar, the tables for its from clause, the conditions modeled by the edges for its where
clause and the remaining attributes for its select clause. Then the process is repeated
to find a different interpretation, that will be based on a different join path. The
final order of the generated interpretations is determined by the way the different
paths are discovered and the cost of the configuration on which each interpretation
is based.

It is important to note here that if the thresholds used in the above steps are
all brought down to zero, then our technique is able to generate all the possible
interpretations that can be defined on a databe, even the most unlikely. In that sense,
our technique is complete. The thresholds serve only to exclude from the results
any interpretation that is not likely to represent the semantics of the keyword query,
while the weights are used to provide the basis for a ranking metric.

6.4.1 Intrinsic Weight Computation

To compute the intrinsic weights, we need to compute the relevance between every
query keyword and every database term. Some fundamental information that can be
used towards this directions, and that is typically available, is the schema informa-
tion. It may include the table and attribute names, the domains of the attributes, and
very often referential and integrity constraints, such as keys and foreign keys. Syn-
tactic descriptions of the contents of an attribute (e.g., regular expressions) can also

146 Bergamaschi et al.

Algorithm 12: Intrinsic SW Matrix Computation
Data: Q: Keyword Query, T : Schema Database Terms
Result: SW matrix
begin

S W ← [0,0, . . . ,0] ;
Σ ← { Synonyms(w,t), Hyponyms(w,t), Hypernyms(w,t), StringSimilarity(w,t) . . . } ;
for w ∈ Q do

for e ∈ T do
sim← 0 ;
for m ∈ Σ do

if m(w,e)> sim then
sim← m(w,e) ;

if ssim ≤ threshold then
sim← 0;

S W[w,c] = ssim * 100 ;

lead to a better matching of keywords to database terms since they offer indications
on whether a keyword can serve as a value for an attribute or not. There are already
many works that offer typical syntax for common attributes such as phone numbers,
addresses, etc. [37], and have been used extensively and successfully in other areas.
If access to the catalog tables is possible, assertion statements can offer an alter-
native source of syntactic information. In the same spirit, relevant values [8], i.e.,
clusters of the attribute domains, are also valuable auxiliary information. Further-
more, there is today a large volume of grammatical and semantic information that
is publicly available on the Internet and can be used as a service. Examples include
the popular WordNet and the many community specific ontologies.

6.4.1.1 Weights for Schema Database Terms

Finding matches between the flat list of keywords and the schema terms looks like
the situation of schema matching [37] in which one of the schemas is the flat uni-
versal relation [29]. We follow a similar approach in which we employ a number of
different similarity measurement techniques and consider the one that offers the best
result. One of these techniques is the string similarity [16]. For the string similarity
we further employ a number of different similarity metrics such as the Jaccard, the
Hamming, the Levenshtein, etc., in order to cover a broad spectrum of situations
that may occur. Since string similarity may fail in cases of highly heterogeneous
schemas that lack a common vocabulary, we also measure the relativeness of a key-
word to schema database term based on their semantic relationship. For that we
employ public ontologies, such as SUMO3, or semantic dictionaries such as Word-

3 www.ontologyportal.org

Title Suppressed Due to Excessive Length 147

Net, that can provide synonyms, hypernyms, hyponyms, or other terms related to a
given word.

Algorithm 12 describes the computation procedure of the intrinsic schema weight
matrixS W. The set� represents the similarity methods we employ. We have a num-
ber of default methods that represent the state of the art in the area, but additional
methods can be included. Each such method takes as input two strings and returns
their respective similarity in a range between 0 and 1. We trust the method that gives
the highest similarity. If a similarity between a keyword and a schema term is found
below a speci�c threshold (that is set by the application) then the similarity is set
explicitly to 0. As a result, at the end of the procedure there might be rows in the
matrix S Wcontaining only zeros. These rows represent keywords that are not sim-
ilar enough to any of the schema database terms, thus, they will be considered later
as candidates for mapping to value database terms, i.e., domains of the schema at-
tributes. The fact that their rows in theS Wmatrix are 0 instead of some low value,
makes the similarities of the keyword to the value database terms that will be com-
puted in a later step to be the dominating factor determining the guess on the role a
speci�c keyword can play.

Example 6.1.Consider the keyword query �people restaurant Naples� posed on the
database of Figure 6.1. Figure 6.4 illustrates a fraction of the weight matrix contain-
ing the intrinsic weights for the database terms derived from the tablesPerson and
Restaurant. Instead of the full names of tables and attributes, only the �rst letter of
the tables and the �rst two letters of the attributes are used. The schema weights SW
are the light gray colored part of the matrix. Note that the keywordNaples has not
been mapped to any of the schema terms since all the values of its row inS Ware 0.

6.4.1.2 Weights for Value Database Terms

For computing the intrinsic value weights, we mainly exploit domain information,
and base our decision on whether a keyword belongs to the domain of an attribute
or not. Furthermore, we have adapted the notion ofSemantic Distance[15] that is
based on results retrieved by a search engine in order to evaluate the relatedness of
two concepts. In particular, we de�ne thesemantic relatednessS R(x;y) of two terms
x andy as:

S R(x;y)=e� 2NXD(x;y), where

NXD(x;y)=fmaxflog f(x); log f(y)g � log f(x;y)g=flogN� minflog f(x); log f(y)gg

with f (x) denoting the number of web documents containingx, and f (x;y) the
number of documents containing bothx andy, as these numbers are reported by
speci�c search engines such as Google, Yahoo!, Cuil, Excite!, etc. The numberN
represents the number of documents indexed by the corresponding search engine.
For our purpose, we compute the semantic relatedness of every keyword - attribute

