Keyword-based Search in Data Integration Systems™

Sonia Bergamaschi', Elton Domnori®, Francesco Guerra®, Raquel Trillo Lado?, and
Yannis Velegrakis®

1 Universita di Modena e Reggio Emilia, via Universita 4, 41121 Modena, Italy
firstname.lastname @unimore.it
2 SID - University of Zaragoza, Marfa de Luna, 1, 50018 Zaragoza, Spain
raqueltl @unizar.es
3 DISI - Universita di Trento, Via Sommarive 14, 38123 Povo (TN), Italy
velgias @disi.unitn.eu

Abstract. In this paper we describe Keymantic, a framework for translating key-
word queries into SQL queries by assuming that the only available information is
the source metadata, i.e., schema and some external auxiliary information. Such
a framework finds application when only intensional knowledge about the data
source is available like in Data Integration Systems.

1 Introduction

One of the main motivations for supporting the research on data integration is to pro-
vide the user with a unique view synthesizing a set of distributed data sources. By
querying a unique integrated view, the user obtains an answer that is the union of the
results returned by the sources involved in the integration process. Since the benefits
of this approach for end users are firm, the research community has been focused on
techniques for building and querying the unified view [9] for over 20 years. Despite
the results obtained in the field, data integration systems are not really permeating the
real world, i.e., we register a low presence of data integration systems in real business
environments. We think that one of the reasons is that querying in such environments is
too complex for end users.

Data integration systems are typically queried by means of requests expressed in
the native query languages (in general structured query languages such as SQL, OQL,
SPARQL, ...). This is definitely a limit for a large exploitation of these systems: they
require skilled users and also impose on data integration systems some of the limita-
tions intrinsic to the query languages. A complete knowledge of the underlying data
structures and their semantics is needed to formulate queries into a structured query
language. Unfortunately, the former requires the user to deeply explore the structure of
the source, that is an error prone and time consuming process when a source is com-
posed of hundreds of unknown tables and attributes. The latter may be too large and too
complex to be communicated to the user. Understanding the semantics conveyed by the

* Extended abstract of the paper “S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, Y.
Velegrakis: Keyword Search over Relational Databases: a Metadata Approach, to appear at
SIGMOD 2011~

Person Reserved

Name | Phone City Email Person | Hotel | Date
Saah | 4631234 | London saah@aaa.bb Saah x123 | 6/10/2009
Sevi | 6987654 | Auckland | eevi@bbb.cc Sevi cs34 | 4/3/2009
Edihb | 1937842 | Santiago | edibh@ccc.dd | | Edihb | cs34 | 7/6/2009

Hotel gltr);l Country | Description
id Name | Address Service City Sl?anehai Cl(:il:la Y eseriptio
x123 | Galaxy | 25 Blicker restaurant | Shanghai g -

Cancun Mexico

cs34 | Krystal | 15 Tribeca parking | Cancun
ee67 | Hilton | 5 West Ocean | air cond. | Long Beach

Long Beach | USA
New York | USA

Booked Restaurant

Person | Rest | Date id Name Address Specialty | City
Saah Rx1 | 5/4/2009 Rx1 | Best Lobster | 25, Margaritas | Seafood | Cancun
Sevi Rx1 | 9/3/2009 Rtl | Naples 200 Park Av. | Italian New York

Fig. 1. A fraction of a database schema with its data.

unified view means to know both the semantics conveyed by the data sources involved
in the integration process and how the semantics of the local views are mapped to the
integrated view. Therefore, it is clear that such a requirement may nullify the whole
motivation for integrating sources: for users holding this knowledge the advantages of
working with an integrated source are highly lowered.

Keyword-based searching has been introduced as a viable alternative to the highly
structured query languages. A number of keyword searching systems over structured
data have been developed, e.g., BANKS, DISCOVER, DBXplorer, Precis and many
others presented in various surveys [6, 11]. Their typical approach is to perform an off-
line pre-processing step that scans the whole instance data and constructs an index, a
symbol table or some structure which is later used during the run time to identify the
parts of the database in which each keyword appears. Once they discover it, they per-
form a path discovery algorithm to find the different ways that these parts are connected
(e.g., finding minimal joining networks, or Steiner trees).

Unfortunately, although keyword-based techniques can be very successful as local
database services, they cannot be easily applied in large Data Integration Systems. One
of the reasons is that the built index requires continuous maintenance since it is based
on data values that may frequently change. If the index is locally stored in the source,
it cannot be used to index the data of all the sources of a data integration system since
it may be under the responsibility of different owners. Furthermore, in data integration
systems, the data sources may not expose their whole data, but only portions of their
schema, thus making impossible to build an index over the instances. On the other
hand, integration systems rely on metadata, in the form of data types, lexical references,
mappings extracted from the sources to be integrated, meaningful for addressing the
solution of a keyword query, but that are not really exploited by the current keyword
based search engines.

To overcome the above issues, we introduce Keymantic[1, 2] a new framework for
keyword based searching on data integration systems that, in contrast to existing ap-
proaches, exploits intensional knowledge to transform keyword queries into semanti-
cally meaningful SQL queries that can be executed by the data integration system.

The structure of this paper is the following. Section 2 provides a motivating exam-
ple, Section 3 introduces our approach and Section 4 sketches out some conclusion and
future work.

2 Motivating Example

Let us assume that a virtual tourism district composed of a set of companies (travel
agencies, hotels, local public administrations, tourism promotion agencies) wants to
publish an integrated view of their tourism data about a location (see Figure 1). Key-
mantic allows users to query that data source with a two step process: firstly the key-
word query is analyzed for discovering its intended meaning, then a ranked set of SQL
queries, expressing the discovered meaning according to the database structure, is for-
mulated.

Each keyword represents some piece of information that has been modeled in the
database, but, depending on the design requirements of the data source, this piece might
have been modeled as data or metadata. Thus, the first task is to discover what each
keyword models in the specific data source and to which metadata / data may be as-
sociated to. The association between keywords and database needs to be approximate:
the synonymous and polysemous terms might allow the discovery of multiple intended
meanings, each one with a rank expressing its relevance. Let us consider, for example,
a query consisting of the keywords “Restaurant Naples”. For instance, a possible mean-
ing of the query might be “find information about the restaurant called Naples”. In this
case, the former keyword should be mapped into a metadata (the table Restaurant)
and the other one into a value of the attribute Name of the same table Restaurant.
A user might have in mind other meanings for the same keywords, for example, “find
the restaurants that are located in the Naples Avenue”, or “in the Naples city”, or “that
cook Naples specialties”. All these intended meanings give rise to different associations
of the keyword Naples; attributes Address, City or Specialty of the table Restau-
rant. This example shows also that keywords in a query are not independent: we expect
that the keywords express different features of what the user is looking for. For this
reason we expect that in our example “Naples” is a value referring to an element of
the Restaurant table. If the user had formulated the keyword query “Restaurant name
Naples”, the number of possible intended meanings would have been reduced, since the
keywords name forces the mappings of Naples into the attribute Name of the table
Restaurant. Notice that different intended meanings may generate a mapping from the
same keyword both into metadata and into data values. For example, in our database
restaurant is the name of a table, but it is also one of the possible values of the attribute
Service in the table Hotel. Finally, the order of the keywords in a query is also another
element to be taken into account since related elements are usually close. If a user asks
for “Person London restaurant New York” one possible meaning of the query is that the
user is looking for the restaurant in New York visited by people from London. Other
permutations of the keywords in the query may generate other possible interpretations.

The second step in answering a keyword query concerns the formulation of an SQL
query expressing one of the discovered intended meaning. In a database, semantic rela-
tionships between values are modeled either through the inclusion of different attributes
under the same table or through join paths across different tables. Different join paths
can lead to different interpretations. Consider, for instance, the keyword query “Person
USA”. One logical mapping is to have the word Person corresponding to the table
Person and the word USA to a value of the attribute Country of the table City. Even
when this mapping is decided, there are different interpretations of the keywords based

Pairs <M*, VW, > Configurations C,

Pairs < M, MY, > ‘

with i=1..n with i=1..n and k=1..m, | | with i=1..n and k=1..m
‘e N ¢ e
Intrinsic Weight \ N
Computation of " \ !
KeQueo?/ds Value Database Terms \ \ ‘1 /'Qu €Y1
WX 3 or zati i jon of the] |3 | Generation
Schema \ of W ..|Best - of the
Intrinsic Weight Selection of the * | based on Ms, to Value Terms P! (el
Information IS i
Computation of Best Mappings
Schema Database Terms to Schema Terms | ™
Query,
(. J -
Step 1 Step 2 Step 3 Step 5

Fig. 2. Overview of the keyword query translation process

on the different join paths that exist between the tables Person and City. For instance,
one can notice that a person and a city are related through a join path that goes through
the City attribute referring to the attribute Name in the table City (determining which
people in the database are from USA), through another path that is based on the table
Hotel (determining which people reserved rooms of Hotels in USA), and also through
another path that is based on the table Restaurant (determining which people are re-
served a table in an American restaurant).

Finding the different semantic interpretations of a keyword query is a combinatorial
problem which can be solved by an exhaustive enumeration of the different mappings
to database structures and values. The large number of different interpretations can be
brought down by using internal and external knowledge that helps in eliminating map-
pings that are not likely to lead to meanings intended by the user. For instance, if one of
the provided keywords in a query is * *320-463-1463" ', it is very unlikely that this
keyword refers to an attribute or table name. It most probably represents a value, and
in particular, due to its format, a phone number. Similarly, the keyword * *‘Bistro’’
in a query does not correspond to a table or an attribute in the specific database. Some
auxiliary information, such as a thesaurus, can provide the information that the word
“bistro” is typically used to represent a restaurant, thus, the keyword can be associated
to the Restaurant table.

3 From Keywords to Queries

The generation of interpretations (i.e. SQL queries) that most likely describe the in-
tended semantics of a keyword query is based on semantically meaningful configura-
tions, i.e. sets of mappings between each keyword and a database term. We introduce
the notion of weight that offers a quantitative measure of the relativeness of a keyword
to a database term, i.e., the likelihood that the semantics of the database term are the
intended semantics of the keyword in the query. The sum of the weights of the keyword-
database term pairs can form a score serving as a quantitative measure of the likelihood
of the configuration to lead to an interpretation that accurately describes the intended
keyword query semantics. The range and full semantics of the score cannot be fully
specified in advance. They depend on the method used to compute the similarity. This

1 2 I i 1 M

keyword,
keywordsz

keywordy,

Fig. 3. Weight table with its SW (light) and VW (dark) parts

is not a problem as long as the same method is used to compute the scores for all the
keywords.

The naive approach for selecting the best configurations is the computation of the
score of each possible configuration and then selecting those that have the highest
scores. Of course, we would like to avoid an exhaustive enumeration of all the possible
configurations, and compute only those that give high scores. The problem of comput-
ing the mapping with the maximum score without an exhaustive computation of the
scores of all the possible mappings is known in the literature as the problem of Bipar-
tite Weighted Assignments [5]. Unfortunately, solutions to this problem suffer from two
main limitations. First, apart from the mutual exclusiveness, they do not consider any
other interdependencies that may exist between the mappings. Second, they typically
provide only the best mapping, instead of a ranked list based on the scores.

To cope with the first limitation, we introduce two different kinds of weights: the in-
trinsic, and the contextual weights. Given a mapping of a keyword to a database term, its
intrinsic weight measures the likelihood that the semantics of the keyword is that of the
database term if considered in isolation from the mappings of all the other keywords
in the query. The computation of an intrinsic weight is based on syntactic, semantic
and structural factors such as attribute and relation names, or other auxiliary external
sources, such as vocabularies, ontologies, domains, common syntactic patterns, etc. On
the other hand, a contextual weight is used to measure the same likelihood but consid-
ering the mappings of the remaining query keywords. This is motivated by the fact that
the assignment of a keyword to a database term may increase or decrease the likeli-
hood that another keyword corresponds to a certain database term. As an example, for
the keyword query * ‘Restaurant Name Naples’’ expressed on the database in
Figure 1, since the keyword * *Naples’’ isright next to keyword Name, mapping the
keyword Name to the attribute Name of the table Restaurant makes more likely the
fact that the keyword Naples is a name value, i.e., should be mapped to the domain of
the attribute Name. At the same time, it decreases its relativeness to the other database
terms. To cope with the second limitation, we have developed a novel algorithm for
computing the best mappings. The algorithm is based on and extends the Hungarian
(a.k.a., Munkres) algorithm [4].

A visual illustration of the individual steps in the keyword query translation task is
depicted in Figure 2. A special data structure, called weight matrix (see Figure 3), plays
a central role in these steps. The weight matrix is a two-dimensional array with a row
for each keyword in the keyword query, and a column for each database term. The value
of a cell [, j] represents the weight associated to the mapping between the keyword i
and the database term j. An R; and Af" columns correspond to the relation R; and
the attribute A; of R;, respectively, while a column with an underlined attribute name
Af represents the data values that may be contained in the column A; of table R;,

i.e., its domain. Two parts (i.e., sub-matrices) can be distinguished in the weight matrix.
One corresponds to the database terms related to schema elements, i.e., relational tables
and attributes, and the other one corresponds to attribute values, i.e., the domains of the
attributes. We refer to database terms related to schema elements as schema database
terms (SW), and to those related to domains of the attributes as value database terms
VW).

Intrinsic Weight Computation. The first step of the process is the intrinsic weight
computation. The output is the populated SW and VW sub-matrices. The computation
is achieved by the exploitation and combination of a number of similarity techniques
based on structural and lexical knowledge extracted from the data source, and on exter-
nal knowledge, such as ontologies, vocabularies, domain terminologies, etc. Note that
the knowledge extracted from the data source is basically the meta-information that the
source makes public, typically, the schema structure and constraints. In the absence of
any other external information, a simple string comparison based on tree-edit distance
can be used for populating the SW sub-matrix. For the VW sub-matrix the notion of
Semantic Distance [7] can always be used in the absence of anything else. As it happens
in similar situations [10], measuring the success of such a task is not easy since there is
no single correct answer. In general, the more meta-information has been used, the bet-
ter. However, even in the case that the current step is skipped, the process can continue
with the weight matrix where all the intrinsic values have the same default value.

Selection of the Best Mappings to Schema Terms. The intrinsic weights provide a first
indication of the similarities of the keywords to database terms. To generate the promi-
nent mappings, we need on top of that to take into consideration the inter-dependencies
among the mappings of the different keywords. We consider first the prominent map-
pings of keywords to schema terms. For that we work on the ST sub-matrix. Based on
the intrinsic weights, a series of mappings M 15 ,Még e, Mf , of keywords to schema
terms are generated. The mappings are those that achieve the highest overall score, i.e.,
the sum of the weights of the individual keyword mappings. The mappings are par-
tial, i.e., not all the keywords are mapped to some schema term. Those that remain
unmapped will play the role of an actual data value and they will be considered in a
subsequent step for mapping to value database terms. The selection of the keywords to
remain unmapped is based on the weight matrix and some cut-off threshold. Those with
a similarity below the threshold remain unmapped. For each mapping M,-S , the weights
of its SW matrix are adjusted to take into consideration the context generated by the
mapping of the neighboring keywords. It is based on the observation that users form
queries in which keywords referring to the same or related concepts are adjacent. The
generation of the mappings and the adjustment of the weights in SW are performed
by an adaptation of the Hungarian algorithm. In particular, the algorithm does not stop
after the generation of the best mapping to continues to the generation of the second
best, the third, etc. Furthermore, some of its internal steps have been modified so that
the weight matrix is dynamically updated every time that a mapping of a keyword to a
database term is decided during the computation. The output of such a step is an updated
weight matrix SW; and, naturally, an updated score for each mapping M;°. Given the
updated scores, some mappings may be rejected. The selection is based on a threshold.
There is no golden value to set the threshold value. It depends on the expectations from

the keyword query answering systems. The higher its value, the less the interpretations
generated at the end, but with higher confidence. In contrast, the lower the threshold
value, the more the mappings with lower confidence.

Contextualization of VI and selection of the Best Mappings to Value Terms. For
each partial mapping M of keyword to schema terms generated in the previous step,
the mappings of the remaining unmapped keywords to value terms needs to be de-
cided. This is done in two phases. First, the intrinsic weights of the VW sub-matrix
that were generated in Step 1 are updated to reflect the added value provided by the
mappings in M, of some of the keywords to schema database terms. This is called
the process of contextualization of the VW sub-matrix, and it increases the weights of
the respective values terms to reflect exactly that. For example, in the keyword query
‘‘Name Alexandria’’ assume that the keyword Alexandria was found dur-
ing the first step to be equally likely the name of a person or of a city. If in Step 2
the keyword Name has been mapped to the attribute Name of the table Person, the
confidence that Alexandria is actually the name of a person is increased, thus, the
weight between that keyword and the value database term representing the domain of
attribute Name should be increased, accordingly. In the second phase, given an updated
VW, sub-matrix, the most prominent mappings of the remaining unmapped keywords
to value database terms are generated. The mappings are generated by using again the
adapted technique of the Hungarian algorithm. The result is a series of partial mappings
MY, with k=1..m;, where i identifies the mapping M on which the computation of
the updated matrix VW, was based. Given one such mapping M, the value weights
are further updated to reflect the mappings of the adjacent keywords to value database
terms, in a way similar to the one done in Step 2 for the SW sub-matrix. The outcome
modifies the total score of each mapping M}, and based on that score the mappings are
ranked.

Generation of the Configurations. As a fourth step, each pair of a mapping M}, to-
gether with its associated mapping Mis is a total mapping of the keywords to database
terms, forming a configuration Cjj. The score of the configuration is the sum of the
scores of the two mappings, or alternatively the sum of the weights in the weight matrix
of the elements [i, j] where ¢ is a keyword and j is the database term to which it is
mapped through M} or M7 .

Generation of the Interpretations. Having computed the best configurations, the in-
terpretations of the keyword query, i.e., the SQL queries, can be generated. The score
of each such query is the score of the respective configuration. Recall, however, that
a configuration is simply a mapping of the keywords to database terms. The presence
of different join paths among these terms results in multiple interpretations. Different
strategies can be used to further rank the selections. One popular option is the length of
the join path [8] but other heuristics found in the literature [11] can also be used. It is
also possible that a same interpretation can be obtained with different configurations. A
post-processing analysis and the application of data-fusion techniques [3] can be used
to deal with this issue. We adopt a greedy approach that computes a query for every al-
ternative join path. In particular, we construct a graph in which each node corresponds
to a database term. An edge connects two terms if they are structurally related, i.e.,
through a table-attribute-domain value relationship, or semantically, i.e., through a ref-

erential integrity constraint. Given a configuration we mark all terms that are part of the
range of the configuration as “marked”. Then we run a breath-first traversal (that favors
shorter paths) to find paths that connect the disconnected components of the graph (if it
is possible). Then, the final SQL query is constructed by using the “marked” database
terms, and in particular, the tables for its from clause, the conditions modeled by the
edges for its where clause and the remaining attributes for its select clause. After that,
the process is repeated to find a different interpretation, that will be based on a dif-
ferent join path. The final order of the generated interpretations is determined by the
way the different paths are discovered and the cost of the configuration on which each
interpretation is based.

4 Conclusion and future work

We described a novel framework for keyword searching in relational databases. In con-
trast to traditional keyword searching techniques that have access to the actual data
stored in the database, our technique uses intensional knowledge such as schema in-
formation, semantic knowledge, rules specified by users, and techniques that exploit
common values and formats. The work opens many new challenging opportunities and
research directions, such as the exploitation of standard modeling practices to enhance
the configuration generation process and produce more meaningful configurations.

References

[1] S. Bergamaschi, E. Domnori, and Francesco. Keyword search over relational databases: a
metadata approach. In to appear in SIGMOD. ACM, 2011.

[2] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. T. Lado, and Y. Velegrakis. Keyman-
tic: Semantic keyword-based searching in data integration systems. PVLDB, 3(2):1637—
1640, 2010.

[3] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1), 2008.

[4] F. Bourgeois and J.-C. Lassalle. An extension of the Munkres algorithm for the assignment
problem to rectangular matrices. Communications of ACM, 14(12):802-804, 1971.

[5] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM Society for
Industrial and Applied Mathematics, Philadelphia, 2009.

[6] S.Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing search with structure. IEEE Data
Eng. Bull., 33(1):3-24, 2010.

[7]1 R. Cilibrasi and P. M. B. Vitdnyi. The google similarity distance. IEEE Transactions on
Knowledge & Data Engineering, 19(3):370-383, 2007.

[8] Y. Kotidis, A. Marian, and D. Srivastava. Circumventing Data Quality Problems Using
Multiple Join Paths. In CleanDB, 2006.

[9] M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233-246. ACM,
2002.

[10] E.Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, 10(4):334-350, 2001.

[11] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

