
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

June 07th, 2018

769857918

[COPY WITH SOLUTIONS]

i

07.06.2018: 769857918 1

1 Spin

An archery contest is being held in town, with two participants.
Each Bowman fires 7 arrows aiming to the same Target pole which is positioned straight in front

of them. When aiming, the hand of the first –more skilled– Bowman shakes less than that of the
second Bowman. For this reason, the direction that is being imprinted to the arrow is selected in the
interval [−1, 1] for the first Bowman and in [−2, 2] for the second Bowman. An ARROW can be fired
with too much, or not enough, power. In this case, the ARROW does not reach the Target no matter
its direction. The first Bowman has a likelihood of 1 over 4 to miss the Target in this way, whereas
the second Bowman has a chance of 1 over 3. Successfully firing an arrow, i.e. with the right amount
of power so as to hit the target, corresponds to sending an ARROW message through a channel. Each
message contains as a payload the direction of the ARROW and the unique identifier of the Bowman
who fired it.

In this scenario, the Target is a wooden pole thick 3 units. We assume that the Target is
listening on the other side of the channel for any incoming message. The Target keeps track of
the numbers of arrows that it received from each Bowman and their score. When an ARROW message
is received, the Target assigns a score to the Bowman that fired it. Hitting the pole in the center
(value: 0) awards 2 points, whereas hitting the left/right edges of the pole (values: −1 or 1) scores
1 point. Missing the pole gives no reward.

To make things more interesting, we take into account the effect of the wind, which can displace
the direction of each ARROW by a randomly selected factor in the interval [−1, 1]. We assume that
neither Bowman is able to compensate for the wind in advance, and that the wind can change direction
at any time. To this extent, the Target “measures” the values of the wind right after it receives an
ARROW, and takes that into account when it assigns the score.

example #1. The Target receives an ARROW with direction −1 from the first bowman, when
the wind is measured to be −1. Thus, the overall direction of the arrow is −2 and no point is
assigned.

example #2. The Target receives an ARROW with direction −2 from the second bowman, when
the wind is measured to be +1. Thus, the overall direction of the arrow is −1 and the score of the
second bowman is increased by 1.

When all arrows have been fired, the Target prints the score table and proclaims the winner.
Model the archery contest in Promela and verify using Spin that there exists no execution in

which at least one bowman gets the maximum score (14).

1

07.06.2018: 769857918 2

Solution:

mtype = { ARROW };

chan bow = [1] of { mtype, pid, short };

byte score[2];

byte cc[2];

active [2] proctype bowman()

{

byte i;

short tremor;

for (i: 1 .. 7) {

select(tremor: -1 - _pid .. 1 + _pid);

if

:: true -> bow!ARROW(_pid, tremor);

:: true -> bow!ARROW(_pid, tremor);

:: _pid == 0 -> bow!ARROW(_pid, tremor);

:: true;

fi;

}

};

active proctype target()

{

short dir, wind, res;

pid idx;

do

:: bow?ARROW(idx, dir) ->

select(wind: -1 .. 1);

res = dir + wind;

score[idx] = score[idx] + (res == 0 -> 2

: (res == 1 -> 1

: (res == -1 -> 1

: 0)));

cc[idx] = cc[idx] + 1;

:: timeout -> break;

od;

assert(score[0] != 14 && score[1] != 14);

printf("Scores: [%d (%d) / %d (%d)]\n", score[0], cc[0], score[1], cc[1]);

if

:: score[0] > score[1] -> printf("Hans wins.\n");

:: score[0] < score[1] -> printf("Henry wins.\n");

:: else -> printf("Draw.\n");

fi;

};

// Verification:

// ~$ spin -a kcd1403.pml ; gcc -o run pan.c ; ./run -a

2

07.06.2018: 769857918 3

2 nuXmv

Encode the following min max procedure for an array of length 5 in NuSMVor nuXmv as a
module min max(arr, len):

def min_max(arr, len):

min = arr[0]

max = arr[0]

for cc in range(0, len): # ~ [0, 1, 2, 3, 4]

if arr[cc] < min:

min = arr[cc]

elif max < arr[cc]:

max = arr[cc]

return # self-loop here!

Declare, inside the main module, a variable arr and a variable mm:

• arr is an array of 5 elements with domain in [1, 10], initialized to { 5, 7, 9, 3, 2 }
• mm is an instance of min max(arr, len) taking as input arr and its corresponding length, 5.

Hints:

• transform the for loop into a while loop before labeling the control points

Verify that the following properties are true:

• The execution does not reach the final state until the loop counter is equal to the array length

• Eventually in the future, the value of min will be equal 2 and the value of max will be equal 9

• The value of max is never larger than every value contained in the array at the same time

• Invariant: the value of min is smaller or equal max

3

07.06.2018: 769857918 4

Solution:

MODULE main()

VAR

arr : array 0..4 of 1..10;

mm : min_max(arr, 5);

INVAR arr[0] = 5 & arr[1] = 7 & arr[2] = 9 & arr[3] = 3 & arr[4] = 2;

MODULE min_max(arr, len)

VAR

pc : { L0, L1, L2, L3, L4, L5, L6 };

cc : 0..len; min : 1..10; max : 1..10;

INIT pc = L0 & cc = 0 & min = arr[0] & max = arr[0];

ASSIGN

next(pc) := case

L0 = pc & cc < len : L1;

L1 = pc & cc < len & arr[cc] < min : L2;

L1 = pc : L3;

L3 = pc & cc < len & max < arr[cc] : L4;

L2 = pc | L3 = pc | L4 = pc : L5;

L5 = pc : L0;

TRUE : L6;

esac;

next(cc) := case

L5 = pc & cc < len : cc + 1;

TRUE : cc;

esac;

next(min) := case

L2 = pc & cc < len : arr[cc];

TRUE : min;

esac;

next(max) := case

L4 = pc & cc < len : arr[cc];

TRUE : max;

esac;

-- The execution does not reach the final state until the loop counter has traversed the whole array

LTLSPEC (L6 != pc U cc = len);

-- Sooner or later, the minimum is equal 2 and the maximum is equal 9

LTLSPEC F (min = 2 & max = 9);

-- The value of max is never larger than every value contained in arr at the same time

LTLSPEC G !(max > arr[0] & max > arr[1] & max > arr[2] & max > arr[3] & max > arr[4]);

-- Invariant: the value of min is smaller or equal max

INVARSPEC max >= min;

4

