
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

January 11th, 2018

769857918

[COPY WITH SOLUTIONS]

i

11.01.2018: 769857918 1

1 Spin

Model the Cigarette Smokers problem using the following specification.
Assume that a cigarette requires three ingredients to be made: TOBACCO, PAPER and MATCHES.

There are three smokers around a table, each of which has an infinite supply of only one ingredient.
Smoker. Each smoker is in a loop waiting for both of his missing ingredients to be put on the

table. Whenever that happens, he grabs the two ingredients from the table (which becomes empty),
rolls a cigarette and smokes it by printing a message. The smoker must also put on the table one
unit of his own resource whenever asked to do so through a channel.

Master Agent. Whenever the table is empty, the master agent sends a message demanding
a unit of resource to be put on the table to two distinct smokers using a channel. The master
agent chooses the smokers that have to put their own resource on the table using a uniform random
distribution.

Simulate the system and visually verify that it behaves correctly: the simulation output consists
of an infinite execution trace in which each smoker smokes infinitely often.

1

11.01.2018: 769857918 2

Solution:

#define TOBACCO 1

#define PAPER 2

#define MATCHES 4

unsigned table : 3 = 0;

inline smoke()

{

if

:: id & TOBACCO -> printf("Tobacco Smokes\n");

:: id & PAPER -> printf("Paper Smokes\n");

:: id & MATCHES -> printf("Matches Smokes\n");

fi

table = 0;

};

proctype smoker(mtype id; chan master)

{

do

:: atomic {

master?eval(id) -> assert(~(id & table));

table = (table|id); assert(id&table);

}

:: table == ((TOBACCO|PAPER|MATCHES) & ~id) ->

smoke(); assert(~table);

od

}

init

{

unsigned i : 2 = 0; unsigned j : 2 = 0;

chan master = [0] of { mtype };

run smoker(TOBACCO, master);

run smoker(PAPER, master);

run smoker(MATCHES, master);

do

:: table == 0 ->

select(i: 0..2); select(j: 0..2);

if

:: i == j -> j = (j + 1) % 3;

:: i == j -> j = (j + 2) % 3;

:: else -> skip;

fi;

master!(1<<i); master!(1<<j);

od;

}

2

11.01.2018: 769857918 3

2 nuXmv

Model a simple alarm system positioned inside the safe of a bank. The alarm system can be
activated and de-activated using a pin. After being activated, the alarm system enters a waiting

period of 10 seconds, time that allows users to evacuate the safe, after which the alarm is armed.
The alarm detects and intrusion when someone is inside the safe and the alarm is armed, after
which it enters a waiting period of 5 seconds to allow the intruder to de-activate the alarm using
the pin. If the alarm is not de-activated after an intrusion is detected, it will fire and remain
fired until de-activation.

The alarm system is comprised by a state variable, with domain { OFF, EVACUATE, ARMED,
INTRUSION, FIRED }, and a s clock variable, with domain equal to 0..59. Initially, state is OFF

and s clock is 0.
The alarm system has two boolean inputs: sensor –true iff a person is detected inside the

safe– and use pin –true iff the pin is being used–. Express the fact that a person must be inside
the safe to use the pin as an invariant of the inputs.

The alarm changes state according to this ordered set of rules:

• if the state is OFF and the pin is used, then the next state is EVACUATE

• if the pin is used, then the next state is OFF

• if the state is EVACUATE and the internal clock is 0, then the next state is ARMED

• if the state is ARMED and a person is detected in the safe, then the next state is INTRUSION

• if the state is INTRUSION and the internal clock is 0, then the next state is FIRED

• otherwise, the state does not change

The value of s clock is set to 10 when the state value changes from OFF to EVACUATE, and it is
set to 5 when the state value changes from ARMED to INTRUSION. Otherwise, its value is decreased
by one unit at each transition until it reaches 0.

Encode the following LTL properties, and verify with NuSMV that they are true:

• if the input pin is never used, then the alarm state is always OFF

• it is always true that, whenever an intrusion is detected then sooner or later the alarm state
will be either OFF or FIRED

• it is always true that “if the alarm is armed in a certain state sk, but the pin is never used
starting from sk onward, then it is necessarily the case that either the sensor won’t detect any
intruder (starting from sk onward) or the alarm will eventually fire”

• if the state of the alarm is infinitely often equal to EVACUATE, then someone must enter the
safe infinitely often

3

11.01.2018: 769857918 4

Solution:

MODULE main()

VAR

sensor : boolean;

pin : boolean;

a : alarm(sensor, pin);

INVAR

pin -> sensor;

LTLSPEC (G !pin) -> (G a.state = OFF);

LTLSPEC G ((a.state = INTRUSION) -> F (a.state in { FIRED, OFF }));

LTLSPEC G ((a.state = ARMED & G !pin) ->

(G !sensor | F a.state = FIRED));

LTLSPEC (G F a.state = EVACUATE) -> (G F sensor);

MODULE alarm(sensor, use_pin)

VAR

state : { OFF, EVACUATE, ARMED, INTRUSION, FIRED };

s_clock : 0..59;

INIT

state = OFF & s_clock = 0;

ASSIGN

next(state) := case

OFF = state & use_pin : EVACUATE;

use_pin : OFF;

EVACUATE = state & s_clock = 0 : ARMED;

ARMED = state & sensor : INTRUSION;

INTRUSION = state & s_clock = 0 : FIRED;

TRUE : state;

esac;

TRANS

case

(state = OFF & next(state) = EVACUATE) : next(s_clock) = 10;

(state = ARMED & next(state) = INTRUSION) : next(s_clock) = 5;

(s_clock > 0) : next(s_clock) = s_clock - 1;

TRUE : next(s_clock) = 0;

esac;

4

