
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

September 12th, 2016

769857918

[COPY WITH SOLUTIONS]

i



12.09.2016: 769857918 1

1 Spin

Write a Promela model for the “Prisoners’ Dilemma”. Two prisoners processes independently send
a CONFESS or DENY message through a pair of synchronous channels to a policeman process.
Each prisoner chooses the content of his message in a random fashion and independently from the
other. The policeman receives the messages, decides an adequate penalty and sends back to each
prisoner a SENTENCE message with the number of years he is supposed to spend in detention, using
the same channel from which he received the initial message. The penalty is decided as follows:

• if both confess, then both spend 5 years each in prison.

• if one confesses and the other denies, then the former is free while the latter spends 20 years
in prison.

• if both deny, then both spend 1 year each in prison.

Simulate the model and (visually) verify that it matches the description.

1



12.09.2016: 769857918 2

Solution:

mtype { SENTENCE, DENY, CONFESS };

chan rooms[2] = [0] of { mtype, byte };

proctype prisoner(byte i)

{

mtype v;

byte years;

if

:: rooms[i] ! CONFESS, 0 ->

printf("Prisoner %d confessed.\n", i);

:: rooms[i] ! DENY, 0;

printf("Prisoner %d denied.\n", i);

fi;

rooms[i] ? SENTENCE, years;

printf("Prisoner %d was sentenced to %d years of detention.\n", i, years);

}

proctype policeman()

{

mtype m1, m2;

byte v1, v2;

rooms[0] ? m1, 0;

rooms[1] ? m2, 0;

if

:: m1 == CONFESS && m2 == CONFESS ->

v1 = 5; v2 = 5;

:: m1 == CONFESS && m2 == DENY ->

v1 = 0; v2 = 20;

:: m1 == DENY && m2 == CONFESS ->

v1 = 20; v2 = 0;

:: m1 == DENY && m2 == DENY ->

v1 = 1; v2 = 1;

fi

atomic {

printf("Sentence decided.\n")

rooms[0] ! SENTENCE, v1;

rooms[1] ! SENTENCE, v2;

}

}

init {

run policeman(2); run prisoner(0); run prisoner(1);

}

2



12.09.2016: 769857918 3

2 nuXmv

Encode the following encryptDecrypt function for 3-bit arrays inNuSMVor nuXmv as amodule
encryptDecrypt(arr):

string encryptDecrypt(arr) {

l1: i = 0;

l2: while (i < 3) {

l3: arr[i] = arr[i] ^ key[i]; // ^ : xor

l4: i++;

}

l5: // done!

}

Hints:

• use ‘pc‘ to keep track of the possible state values { l1, l2, l3, l4, l5 }
• assume ‘pc‘ remains equal to ‘l5‘ once it reaches this value, and initialize it to ‘l5‘

• define ‘key[0]‘, ‘key[1]‘ and ‘key[2]‘ to be equal to ‘0d4 7‘, ‘0d4 13‘ and ‘0d4 2‘

respectively.

• ensure that the content of ‘arr‘ does not change if ‘pc != l3‘

• double check that the content of ‘arr‘ is correctly changed whenever ‘pc = l3‘

Extend the previous module to accept a ‘reset‘ signal as input, i.e. encryptDecrypt(arr,
reset); modify the transition relation so that whenever ‘reset‘ is true and ‘pc = l5‘ then the
next value of ‘pc‘ is ‘l1‘.

Create a module ‘main‘ with 3 variables:

• ‘arr‘, an array of 3 elements, each of which is of type ‘word[4]‘

• ‘enc‘, an instance of the encryption module initialized with parameters ‘arr, reset‘

• ‘state‘ with values in { CALL, EXEC }

Define ‘reset‘ to be true iff ‘state = CALL‘. Initialize ‘arr[0]‘, ‘arr[1]‘, ‘arr[2]‘ and
‘state‘ to the values ‘0d4 15‘, ‘0d4 9‘, ‘0d4 4‘ and ‘CALL‘ respectively. The value of ‘state‘
changes according to these ordered rules:

• if ‘state‘ is equal to ‘CALL‘, then its next value is ‘EXEC‘

• if the value of ‘pc‘ in ‘enc‘ is equal to ‘l5‘, then its next value is ‘CALL‘

• Otherwise, ‘state‘ keeps its value

Encode the following properties and check that they are all verified:

• whenever the encrypting function is started, sooner or later it terminates its execution

• sooner or later, the content of ‘arr‘ is equal to { ‘0ud4 8‘, ‘0ud4 4‘, ‘0ud4 6‘ }
• the content of ‘arr‘ is equal to its initialization values infinitely often

• whenever ‘state = CALL‘, then in the next state the encrypting function starts executing
(i.e. ‘enc.pc = l1‘)

3



12.09.2016: 769857918 4

Solution:

MODULE encryptDecrypt(arr, n, reset)

VAR

pc : { l1, l2, l3, l4, l5 };

i : 0..n;

DEFINE

done := pc = l5;

key[0] := 0d4_7;

key[1] := 0d4_13;

key[2] := 0d4_2;

ASSIGN

init(pc) := l5;

next(pc) := case

pc = l1 : l2;

pc = l2 & i < n : l3;

pc = l2 : l5;

pc = l3 : l4;

pc = l4 : l2;

pc = l5 & reset : l1;

TRUE : pc;

esac;

init(i) := 0;

next(i) := case

pc = l1 : 0;

pc = l4 & i < n : i + 1;

TRUE : i;

esac;

TRANS

pc != l3 -> next(arr[0]) = arr[0] &

next(arr[1]) = arr[1] & next(arr[2]) = arr[2];

TRANS

pc = l3 -> (

(i = 0 -> next(arr[0]) = (arr[0] xor key[0]) &

next(arr[1]) = arr[1] & next(arr[2]) = arr[2]) &

(i = 1 -> next(arr[1]) = (arr[1] xor key[1]) &

next(arr[0]) = arr[0] & next(arr[2]) = arr[2]) &

(i = 2 -> next(arr[2]) = (arr[2] xor key[2]) &

next(arr[0]) = arr[0] & next(arr[1]) = arr[1])

);

4



12.09.2016: 769857918 5

MODULE main

VAR

arr : array 0..2 of word[4];

enc : encryptDecrypt(arr, 3, reset);

state : { CALL, EXEC };

DEFINE

reset := state = CALL;

INIT

(arr[0] = 0d4_15) & (arr[1] = 0d4_9) & (arr[2] = 0d4_4) & (state = CALL);

ASSIGN

next(state) := case

state = CALL : EXEC;

enc.pc = l5 : CALL;

TRUE : state;

esac;

-- - whenever the encrypting function is started, sooner or later

-- it terminates its execution

LTLSPEC G ((enc.pc = l1) -> F enc.done)

-- - sooner or later, the content of ‘arr‘ is equal to the array

-- { ‘0ud4_8‘, ‘0ud4_4‘, ‘0ud4_6‘}

LTLSPEC F ((arr[0] = 0ud4_8) & (arr[1] = 0ud4_4) & (arr[2] = 0ud4_6));

-- - the content of ‘arr‘ is equal to its initialization values

-- infinitely often

LTLSPEC G F ((arr[0] = 0ud4_15) & (arr[1] = 0ud4_9) & (arr[2] = 0ud4_4));

-- - whenever ‘state = CALL‘, then in the next state the encrypting function starts

-- executing (e.g. ‘enc.pc = l1‘)

LTLSPEC G (state = CALL -> X enc.pc = l1);

5


