
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

June 13th, 2017

769857918

[COPY WITH SOLUTIONS]

i

13.06.2017: 769857918 1

1 Spin

As a junior, unnamed, engineer of a spaceship that just landed on an unexplored planet, you are
given the task to solve a puzzle given by an alien technology artefact that is blocking the way of
your not-so-bright commander.

The puzzle consists of five ControlPillars, numbered from 0 to 4, controlling a gate. Initially,
pillars 1, 3 and 4 are in ON (i.e. true or 1) state, while the remaining two pillars are OFF (i.e.
false or 0). That is, the initial configuration is { OFF, ON, OFF, ON, ON }. The gate opens when
all the pillars are contemporarily set to ON.

Each pillar is in a loop waiting for a command on an input channel ctl (passed as argument).
Whenever a pillar receives a command, it changes its own state –and the state of its immediate left
and right neighbours– to the opposite value1. E.g. starting from the initial configuration, if pillar
1 is given a command then the final configuration is { ON, OFF, ON, ON, ON }. In this regard,
you can assume that the pillars are placed in a virtual circle, so that pillars 0 and 4 are considered
neighbours of each other. Each pillar exits its control loop whenever the gate opens.

The Commander is stuck in a loop, continuously checking whether the gate has opened or not.
If that is the case, the Commander prints a “Walk in...” message and exits the loop. Otherwise,
the Commander chooses a random pillar, prints its ID on screen, and interacts with it by sending a
message through its associated communication channel.

Model the system using one instance of Commander() process, five instances of ControlPillar(id,
ctl) processes, and conveniently initialise the system using the init() process.

Use yourmodel checking skills to aid the commander getting inside the gate, by writing a property
p1 s.t. its counter-example is a sequence of button-switches that will open the gate.

Also, briefly explain, as a comment on your solution, how you can use Spin in order to find [in
finite time] the minimum-length sequence of switches that opens the gate. What is the sequence?

1Hint: ensure that both the receipt of a command and the change in the system configuration are executed as a
single atomic sequence.

1

13.06.2017: 769857918 2

Solution:

#define OFF 0

#define ON 1

chan ps[5] = [0] of { bit };

bit state[5] = { OFF, ON, OFF, ON, ON };

#define gate_is_open (state[0] & state[1] & state[2] & state[3] & state[4])

proctype ControlPillar(byte id; chan ctl)

{

bit in;

do

:: atomic { ctl?in ->

state[(id - 1 + 5) % 5] = ! state[(id - 1 + 5) % 5];

state[id] = ! state[id];

state[(id + 1) % 5] = ! state[(id + 1) % 5];

}

:: gate_is_open -> break;

od

}

active proctype Commander()

{

byte id;

do

:: !gate_is_open ->

select(id: 0 .. 4);

printf("E (%d)\n", id);

ps[id]!1;

:: else ->

printf("Walk in..\n"); break;

od;

}

init

{

run ControlPillar(0, ps[0]); run ControlPillar(1, ps[1]);

run ControlPillar(2, ps[2]); run ControlPillar(3, ps[3]);

run ControlPillar(4, ps[4]);

}

ltl p1 { [] ! gate_is_open }

// ~$ spin -search -bfs elaaden_vault.pml # sequence is E(3), E(4)

2

13.06.2017: 769857918 3

2 nuXmv

Encode the following sorting algorithm for an array of length 5 in NuSMVor nuXmv as a module
gnomeSort(arr, len):

procedure gnomeSort(arr, len):

l0: pos := 0

l1: while (pos < len):

l2: if (pos == 0 or arr[pos] >= arr[pos - 1]):

l3: pos := pos + 1

else:

l4: swap(arr[pos], arr[pos - 1])

pos := pos - 1

l5: return # self-loop here!

Declare, inside the main module, a variable arr and a variable sorter:

• arr is an array of 5 elements with domain in [1, 10], initialised to { 9, 7, 5, 3, 1 }
• sorter is an instance of gnomeSort(arr, len) taking as input arr and its corresponding
length, 5.

Verify that the following properties are true:

• the algorithm always terminates

• eventually in the future, the array will be sorted forever

• eventually the array is sorted, and the algorithm is not done until the array is sorted

3

13.06.2017: 769857918 4

Solution:

MODULE main()

VAR

arr : array 0..4 of 1..10;

sorter : gnomeSort(arr, 5);

INIT arr[0] = 9 & arr[1] = 7 & arr[2] = 5 & arr[3] = 3 & arr[4] = 1;

MODULE gnomeSort(arr, len)

VAR

pos : 0..len;

pc : { l0, l1, l2, l3, l4, l5 };

INIT pc = l0 & pos = 0;

ASSIGN

next(pc) := case

pc = l0 | pc = l3 | pc = l4 : l1;

pc = l1 & pos < len : l2;

pc = l2 & ((pos = 0) | (pos > 0 & pos < len & arr[pos] >= arr[pos - 1])) : l3;

pc = l2 : l4;

(pc = l1 & pos >= len) | pc = l5 : l5;

esac;

next(pos) := case

pc = l3 & pos < len : pos + 1;

pc = l4 & pos > 0 : pos - 1;

TRUE : pos;

esac;

TRANS pc != l4 ->

(next(arr[0]) = arr[0] & next(arr[1]) = arr[1] & next(arr[2]) = arr[2] &

next(arr[3]) = arr[3] & next(arr[4]) = arr[4]);

TRANS (pc = l4 & pos = 1) ->

(next(arr[0]) = arr[1] & next(arr[1]) = arr[0] & next(arr[2]) = arr[2] &

next(arr[3]) = arr[3] & next(arr[4]) = arr[4]);

TRANS (pc = l4 & pos = 2) ->

(next(arr[0]) = arr[0] & next(arr[1]) = arr[2] & next(arr[2]) = arr[1] &

next(arr[3]) = arr[3] & next(arr[4]) = arr[4]);

TRANS (pc = l4 & pos = 3) ->

(next(arr[0]) = arr[0] & next(arr[1]) = arr[1] & next(arr[2]) = arr[3] &

next(arr[3]) = arr[2] & next(arr[4]) = arr[4]);

TRANS (pc = l4 & pos = 4) ->

(next(arr[0]) = arr[0] & next(arr[1]) = arr[1] & next(arr[2]) = arr[2] &

next(arr[3]) = arr[4] & next(arr[4]) = arr[3]);

DEFINE

done := pc = l5;

4

13.06.2017: 769857918 5

-- The algorithm always terminates

CTLSPEC AF AG done ;

-- Eventually in the future, the array will be sorted forever

CTLSPEC AF AG (arr[0] <= arr[1] & arr[1] <= arr[2] &

arr[2] <= arr[3] & arr[3] <= arr[4]) ;

-- Eventually the array is sorted, and the algorithm is not done until the array is sorted

CTLSPEC A[!done U (arr[0] <= arr[1] & arr[1] <= arr[2] &

arr[2] <= arr[3] & arr[3] <= arr[4])] ;

5

