
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

July 03rd, 2018

769857918

[COPY WITH SOLUTIONS]

i



03.07.2018: 769857918 1

1 Spin

Two friends play the famous Rock-Paper-Scissors game to establish who is going to pay for dinner.
The friendly match has 10 rounds; the player which wins the largest number of rounds wins the

game and pays for dinner. If neither player wins more rounds than the other, it is a tie and they
split the bill in two equal halves.

The Waiter is responsible for managing the game and keeping the score. For each round, it
sends a sequence of 3 messages to each player: “1”, “2” and “3”.

Both players do nothing upon receival of messages “1” and “2”. When a Player receives message
“3”, it chooses a hand value among { ROCK, PAPER, SCISSORS } and sends it back to the Waiter
for scrutiny. Each Player has a different likelyhood of choosing one hand value over the other:

• Player 1 - ROCK: 1/4, PAPER: 1/2, SCISSORS: 1/4

• Player 2 - ROCK: 2/5, PAPER: 1/5, SCISSORS: 2/5

At each round, the Waiter receives the hand value picked by each Player and keeps track of
the score table according to the following rules:

• PAPER beats ROCK

• ROCK beats SCISSORS

• SCISSORS beat PAPER

• picking the same value results in a tie

example #1. Player 0 plays PAPER and Player 1 plays ROCK, thus Player 0 gains 1 point.

example #2. Both Player 0 and Player 1 pick SCISSORS. Neither score is incremented.

After 10 rounds, the game ends and all processesmust gracefully reach the end of their execution
(i.e. no process should be forever blocked on an instruction which is not executable).

Model the Rock-Paper-Scissors game in Promela and find –using Spin– an execution trace in
which the two friends split the bill equally.

(optional). Make appropriate use of printf() so that one (your teacher!) can easily follow the
moves played by the two friends at each round and see the final score table of the game.

1



03.07.2018: 769857918 2

Solution:

mtype = { ROCK, PAPER , SCISSORS };

byte score[2];

inline print_hand(v)

{

if

:: v == PAPER -> printf("paper ");

:: v == ROCK -> printf("rock ");

:: v == SCISSORS -> printf("scissors");

fi;

};

proctype player (chan chin, chou)

{

mtype hand;

byte cc;

do

:: chin?1 -> skip;

:: chin?2 -> skip;

:: chin?3 -> cc = cc + 1;

if

:: true -> hand = ROCK;

:: true -> hand = PAPER;

:: true -> hand = SCISSORS;

:: 2 == _pid -> hand = ROCK;

:: 1 == _pid -> hand = PAPER;

:: 2 == _pid -> hand = SCISSORS;

fi;

chou!hand;

:: 10 == cc ->

break;

od;

}

active proctype waiter() {

chan chou[2] = [1] of { byte };

chan chin[2] = [1] of { mtype };

mtype hand[2];

byte i;

run player(chou[0], chin[0]);

run player(chou[1], chin[1]);

printf("\n\t\t Player 0 |\tPlayer 1\n");

for (i: 0 .. 9) {

chou[0]!1; chou[1]!1;

chou[0]!2; chou[1]!2;

chou[0]!3; chou[1]!3;

2



03.07.2018: 769857918 3

chin[0]?hand[0]; chin[1]?hand[1];

printf("Round %d: ", i);

print_hand(hand[0]);

printf("|");

print_hand(hand[1]);

if

:: hand[0] == hand[1] ->

printf(": tie\n");

:: hand[0] % 3 == ((hand[1] + 2) % 3) ->

printf(": 0 wins\n");

score[0] = score[0] + 1;

:: else ->

printf(": 1 wins\n");

score[1] = score[1] + 1;

fi;

}

printf("\n Summary: %d vs %d\n\n", score[0], score[1]);

};

ltl p0 { ! <> [] (score[0] == score[1]) };

// Verification:

// ~$ spin -a rps.pml ; gcc -o run pan.c ; ./run -a

3



03.07.2018: 769857918 4

2 nuXmv

Encode the following mode procedure for an array of length 5 in NuSMVor nuXmv as a module
mode(arr, ret):

def mode(arr, ret):

fr = [0, 0, 0]

cc = 0

L0: while (cc < 5):

L1: fr[arr[cc]] = fr[arr[cc]] + 1

L2: cc = cc + 1

L3: max = fr[1]

ret = 1

cc = 1

L4: while (cc <= 3):

L5: if (fr[cc] > max):

L6: ret = cc

max = fr[cc]

L7: cc = cc + 1

L8: return # self-loop here!

Declare, inside the main module, the following variables:

• arr, an array of 5 elements with domain in [1, 3], initialized to { 3, 1, 3, 1, 3 }
• ret, a variable with domain in [1, 3]

• me is an instance of mode(arr, ret) taking as input arr and ret

Hints:

• provide an appropriate initial value for max and ret, so as to reduce the number of viable
initial states

Verify that the following properties are true:

• In the final state the mode is equal to 3

• Sooner or later, the value of cc will remain equal to 4 forever

• Invariant: the value of max is always smaller than 4

4



03.07.2018: 769857918 5

Solution:

MODULE main()

VAR

arr : array 0..4 of 1..3;

ret : 1..3;

me : mode(arr, ret);

INVAR arr[0] = 3 & arr[1] = 1 & arr[2] = 3 & arr[3] = 1 & arr[4] = 3;

MODULE mode(arr, ret)

VAR

fr : array 1..3 of 0..5;

cc : 0..5;

max : 0..5;

pc : { L0, L1, L2, L3, L4, L5, L6, L7, L8 };

INIT

pc = L0 & cc = 0 & max = 0 & ret = 1 &

fr[1] = 0 & fr[2] = 0 & fr[3] = 0;

ASSIGN

next(pc) := case

L0 = pc & cc < 5 : L1;

L0 = pc : L3;

L1 = pc : L2;

L2 = pc : L0;

L3 = pc | L7 = pc : L4;

L4 = pc & cc <= 3 : L5;

L4 = pc : L8;

L5 = pc & 1 <= cc &

cc <= 3 & fr[cc] > max : L6;

L5 = pc | L6 = pc : L7;

TRUE : L8;

esac;

next(cc) := case

(L2 = pc | L7 = pc) & cc < 5 : cc + 1;

L3 = pc : 1;

TRUE : cc;

esac;

next(max) := case

L3 = pc : fr[1];

L6 = pc & 1 <= cc & cc <= 3 : fr[cc];

TRUE : max;

esac;

next(ret) := case

L3 = pc : 1;

L6 = pc & 1 <= cc & cc <= 3 : cc;

TRUE : ret;

esac;

5



03.07.2018: 769857918 6

TRANS (pc != L1 | (cc < 5 & arr[cc] != 1)) -> next(fr[1]) = fr[1];

TRANS (pc != L1 | (cc < 5 & arr[cc] != 2)) -> next(fr[2]) = fr[2];

TRANS (pc != L1 | (cc < 5 & arr[cc] != 3)) -> next(fr[3]) = fr[3];

TRANS (pc = L1 & (cc < 5 & arr[cc] = 1)) -> next(fr[1]) = fr[1] + 1;

TRANS (pc = L1 & (cc < 5 & arr[cc] = 2)) -> next(fr[2]) = fr[2] + 1;

TRANS (pc = L1 & (cc < 5 & arr[cc] = 3)) -> next(fr[3]) = fr[3] + 1;

-- In the final state the mode is equal to 3

LTLSPEC G (pc = L8 -> ret = 3);

-- Sooner or later, the value of cc will remain equal to 4 forever

LTLSPEC F G (cc = 4);

-- Invariant: the value of max is always smaller than 4

INVARSPEC max <= 3;

6


