
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

June 18th, 2015

976985749

[COPY WITH SOLUTIONS]

i



18.06.2015: 976985749 1

Implement a 4-bit counter that counts all even numbers starting from 0 (e.g. 0, 2, 4, 6, 8,
10, 12, 14, 0, 2, ...) when the “reset” input is FALSE. The counter shall always be immediately
set to 0 when the “reset” input is TRUE. Use a variable “out” to represent the output of the
counter. Use four boolean variables “b0”, “b1”, “b2”, “b3” to represent the bits of the counter,
from the least-significative to the most-significative ones. Notice that, assuming reset == FALSE,
the following is true:

• “b0” is always FALSE

• “b1” changes value at each transition

• “b2” changes value only when “b1” is TRUE

• “b3” changes value only when both “b1” and “b2” are TRUE

b3 b2 b1 b0 out
0 0 0 0 0
0 0 1 0 2
0 1 0 0 4
0 1 1 0 6
1 0 0 0 8
1 0 1 0 10
1 1 0 0 12
1 1 1 0 14

Figure 1: bits evolution at each transition

Model the 4-bit counter, express the following properties, and have nuXmv verify them or provide
a counter-examples.

• CTL Properties:

– it is never the case that the counter is odd

– it is necesarily always the case that when reset is true or the number is 14, then necessarily
at the next step the value of the counter is 0

– it is always the case that if reset is FALSE, then the next value of b1 is !b1

– it is always the case that, if both b1 and b2 are TRUE, then the next value of b3 is equal
to !b3

• LTL Properties:

– infinitely often the value of the counter is 0

– infinitely often the value of the counter is 2

– if reset is always false, then infinitely often the value of the counter is 2

1



18.06.2015: 976985749 2

Solution:

MODULE main

VAR

b0: boolean;

b1: boolean;

b2: boolean;

b3: boolean;

reset: boolean;

DEFINE

out := toint(b0) + 2*toint(b1) + 4*toint(b2) + 8*toint(b3);

ASSIGN

init(b0) := FALSE;

init(b1) := FALSE;

init(b2) := FALSE;

init(b3) := FALSE;

next(b0) := FALSE;

next(b1) := case

reset : FALSE;

TRUE : !b1;

esac;

next(b2) := case

reset : FALSE;

b1 : !b2;

TRUE : b2;

esac;

next(b3) := case

reset : FALSE;

b1 & b2 : !b3;

TRUE : b3;

esac;

-- it is never the case that the counter is odd

CTLSPEC AG !(b0 = TRUE)

-- it is necesarily always the case that when reset is true or the number

-- is 14, then necessarily at the next step the value of the counter is 0

CTLSPEC AG ((reset | out=14) -> AX (out=0))

-- it is always the case that if reset is FALSE, then the next value of b1 is !b1

CTLSPEC AG ((!reset&b1 -> AX !b1) &

(!reset&!b1 -> AX b1))

2



18.06.2015: 976985749 3

-- it is always the case that, if both b1 and b2 are TRUE,

-- then the next value of b3 is equal to !b3

CTLSPEC AG ((b1&b2&b3 -> AX !b3) &

(b1&b2&!b3 -> AX b3))

-- infinitely often the value of the counter is 0

LTLSPEC G F (out = 0)

-- infinitely often the value of the counter is 2

LTLSPEC G F (out = 2)

-- if reset is always false, then infinitely often the value of the counter is 2

LTLSPEC (G ! reset) -> (G F (out = 2))

3



18.06.2015: 976985749 4

1 Spin

Write a Promela program that initializes an array of 10 integers and computes the product of the
values in the array. The initialization procedure should non-deterministically assign a random value
in the range [0..9] to each array location. Both the content of the array and the final product should
be printed on screen. Execute a simulation of the program and visually check that the computed
value is correct.

4



18.06.2015: 976985749 5

Solution:

#define N 10

init {

int a[N];

int i = 0;

int product = 1;

do

:: (i >= N) -> break;

:: else ->

if

:: true -> a[i] = 0

:: true -> a[i] = 1

:: true -> a[i] = 2

:: true -> a[i] = 3

:: true -> a[i] = 4

:: true -> a[i] = 5

:: true -> a[i] = 6

:: true -> a[i] = 7

:: true -> a[i] = 8

:: true -> a[i] = 9

fi;

printf("a[%d] = %d\n", i, a[i]);

i++;

od;

i = 0;

do

:: (i >= N) -> break

:: else ->

product = product * a[i];

i++;

od;

printf("The product is: %d\n", product);

}

5


